
NI-VISA™

User Manual

NI-VISA User Manual
September 1997 Edition
Part Number 321074C-01
© Copyright 1996, 1997 National Instruments Corporation. All Rights Reserved.

1,
support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248
Fax: (512) 794-5678

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 5
Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

ng
denced
at do

nty
r free.

tside
pping

ly
serves
. The
ble for

ction
uments
ovided
he

ties, or

nical,

ability

on the
g

itional
s injury
uments
ed to
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evi
by receipts or other documentation. National Instruments will, at its option, repair or replace software media th
not execute programming instructions if National Instruments receives notice of such defects during the warra
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or erro

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been careful
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any a
against National Instruments must be brought within one year after the cause of action accrues. National Instr
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty pr
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow t
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third par
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part,
without the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW®, CVI™, NI-488.2™, NI-VISA™, NI-VXI™, and VXIpc™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v
Table
 of

Contents
i
ii

1
-1
2

-1
2
3
-4
5
6
-7
7
7
8
9
10
10
12
About This Manual
Organization of This Manual .. ix
Conventions Used in This Manual..x
How to Use This Documentation Set ...xi
Related Documentation...x
Customer Communication ..x

Chapter 1
Introduction

How to Use This Manual ..1-
What You Need to Get Started ...1
Introduction to VISA ..1-

Chapter 2
Introductory Programming Examples

Example of Message-Based Communication ...2
Example 2-1..2-
Example 2-1 Discussion ...2-

Example of Register-Based Communication..2
Example 2-2..2-
Example 2-2 Discussion ...2-

Example of Handling Events ..2
Callbacks ..2-
Queuing ..2-
Example 2-3..2-
Example 2-3 Discussion ...2-

Example of Locking..2-
Example 2-4..2-
Example 2-4 Discussion ...2-
NI-VISA User Manual

Table of Contents

2
3

5
-6
7
8

-1
2
3
4
5
-6
-7
7

0
1
12
12

-2
4
-5
5

-8
Chapter 3
VISA Overview

Introduction .. 3-1
Objectives of VISA .. 3-
Programming with VISA.. 3-

Beginning Terminology ... 3-3
Communication Channels .. 3-
The Resource Manager .. 3
Register Communication.. 3-
Example of Interface Independence... 3-

Chapter 4
Message-Based Communication

Introduction .. 4-1
Basic I/O Services .. 4

Synchronous Read/Write Services... 4-
Asynchronous Read/Write Services... 4-
Clear Service .. 4-
Trigger Service... 4-
Status/Service Request Service.. 4

Formatted I/O Services... 4
Formatted I/O Operations .. 4-
Variable List Operations .. 4-8
Manually Flushing the Formatted I/O Buffers... 4-9
Automatically Flushing the Formatted I/O Buffers 4-9
Resizing the Formatted I/O Buffers ... 4-1
Controlling the Serial I/O Buffers.. 4-1

Example VISA Message-Based Application.. 4-
Example 4-1 ... 4-

Chapter 5
Register-Based Communication

Introduction .. 5-1
High-Level Access Operations... 5
High-Level Block Operations... 5-
Low-Level Access Operations ... 5

Overview of Register Accesses from Computers .. 5-
Using VISA to Perform Low-Level Register Accesses................................. 5-7
Operations versus Pointer Dereference.. 5
Manipulating the Pointer.. 5-8
NI-VISA User Manual vi © National Instruments Corporation

Table of Contents

9
10
0

-10
-10
11
-11
12
12

-1
-1
-1
2
-4
4

-2
-3

6
-7
-7
-8
9
11
1
1

-

Example 5-1..5-
Bus Errors...5-

Comparison of High-Level and Low-Level Access ...5-1
Speed ..5
Ease of Use...5
Accessing Multiple Address Spaces...5-

Shared Memory Operations ..5
Shared Memory Sample Code..5-
Example 5-2..5-

Chapter 6
VISA Resource Manager

Purpose of the VISA Resource Manager ..6
Using the VISA Resource Manager..6

Accessing Resources ..6
Example 6-1..6-
Searching for Resources ...6
Example 6-2..6-

Chapter 7
VISA Events

Introduction...7-1
Supported Events ..7
Enabling and Disabling Events...7
Queuing...7-4
Callbacks...7-5

Callback Modes..7-
Independent Queues ...7
The userHandle Parameter ...7

Queuing and Callback Mechanism Sample Code...7
Example 7-1..7-

The Life of the Event Context ..7-
Event Context with the Queuing Mechanism...7-1
Event Context with the Callback Mechanism ..7-1

Chapter 8
VISA Locks

Introduction...8-1
Lock Types ...81
© National Instruments Corporation vii NI-VISA User Manual

Table of Contents

2

3
-4
4

-1

-4

5

-6

5

Lock Sharing .. 8-
Acquiring an Exclusive Lock While Owning a Shared Lock........................ 8-3
Nested Locks.. 8-

Locking Sample Code .. 8
Example 8-1 ... 8-

Chapter 9
NI-VISA Platform-Specific and Portability Issues

Programming Considerations ... 9
Debugging Tool for Windows 95/NT.. 9-1
Multiple Applications Using the NI-VISA Driver... 9-2
Low-Level Access Functions... 9-2
Interrupt Callback Handlers ... 9-3

Multiple Interface Support Issues... 9
VXI and GPIB Platforms ... 9-5
Multiple GPIB-VXI Support.. 9-5
Serial Port Support ... 9-
VME Support ... 9-6

Windows 3.x Issues.. 9
Installation Overview... 9-6
Memory Model .. 9-6
Application Stack Size ... 9-7

Appendix A
Visual Basic Examples

Appendix B
Customer Communication

Glossary

Index

Tables
Table 1-1. NI-VISA Support .. 1-3

Table 9-1. How VISA Invokes Callbacks .. 9-3
Table 9-2. How Serial Ports Are Numbered... 9-
NI-VISA User Manual viii © National Instruments Corporation

© National Instruments Corporation ix
About
This

Manual

 the

ntly

This manual contains information on using the VISA Library
Application Programmer’s Interface (API). This manual is meant to
be used with the NI-VISA online help or with the NI-VISA Programmer
Reference Manual.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, Introduction, discusses how to use this manual, lists
what you need to get started, and contains a brief description of
VISA Library.

• Chapter 2, Introductory Programming Examples, introduces some
examples of common communication between instruments.

• Chapter 3, VISA Overview, contains an overview of the VISA
Library.

• Chapter 4, Message-Based Communication, shows how to use the
VISA library in message-based communication.

• Chapter 5, Register-Based Communication, shows how to use the
VISA library in register-based communication.

• Chapter 6, VISA Resource Manager, describes the purpose of the
VISA Resource Manager in an instrumentation system and
discusses its two most important aspects: opening sessions to
resources, and searching for particular resources that are curre
available through the Resource Manager.

• Chapter 7, VISA Events, describes the VISA event model and how
to use it.

• Chapter 8, VISA Locks, describes VISA locks and how they are
intended to be used.

• Chapter 9, NI-VISA Platform-Specific and Portability Issues,
discusses programming information for you to consider when
developing applications that use the NI-VISA driver.
NI-VISA User Manual

About This Manual

e
e.

our

s

n

rts

ons

zes

o a

put

k
vice
 and

d
• Appendix A, Visual Basic Examples, shows the Visual Basic
syntax of the ANSI C examples given earlier in this manual. Th
examples use the same numbering sequence for easy referenc

• Appendix B, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
products and manuals.

• The Glossary contains an alphabetical list and description of term
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics i
this manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

This icon to the left of bold italicized text denotes a note, which ale
you to important information.

bold Bold text denotes parameters, menus, menu items, dialog box butt
or options, or error messages.

bold italic Bold italic text denotes a note, caution, or warning.

bold Bold text in this font denotes the messages and responses that the
monospace computer automatically prints to the screen. This font also emphasi

lines of example code that are different from the other examples.

italic Italic text denotes emphasis, a cross reference, or an introduction t
key concept.

italic Italic text in this font denotes that you must supply the appropriate
monospace words or values in the place of these items.

monospace Text in this font denotes text or characters that are to be literally in
from the keyboard, sections of code, programming examples, and
syntax examples. This font is also used for the proper names of dis
drives, paths, directories, programs, subprograms, subroutines, de
names, functions, operations, variables, filenames, and extensions,
for statements and comments taken from program code.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, an
terms are listed in the Glossary.
NI-VISA User Manual x © National Instruments Corporation

About This Manual

re

e

s.

this

ul

How to Use This Documentation Set
Use the documentation that came with your GPIB and/or VXI hardwa
and software for Windows to install and configure your system.

Refer to the Read Me First document for information on installing th
NI-VISA distribution media.

Use the NI-VISA User Manual for detailed information on how to
program using VISA.

Use the NI-VISA online help or the NI-VISA Programmer Reference
Manual for specific information about the attributes, events, and
operations, such as format, syntax, parameters, and possible error

♦ Windows 95/NT users—The NI-VISA Programmer Reference Manual is
not included in Windows 95/NT kits. Windows 95/NT users can access
information through the NI-visa.hlp file at
Start»Programs»VXIpnp»VISA Help.

Related Documentation
The following documents contain information that you may find helpf
as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile
Backplane Bus: VMEbus

• ANSI/IEEE Standard 1155-1992, VMEbus Extensions for
Instrumentation: VXIbus

• ANSI/ISO Standard 9899-1990, Programming Language C

• NI-488.2 Function Reference Manual for DOS/Windows, National
Instruments Corporation

• NI-488.2 User Manual for Windows, National Instruments
Corporation

• NI-VXI Programmer Reference Manual, National Instruments
Corporation

• NI-VXI User Manual, National Instruments Corporation
© National Instruments Corporation xi NI-VISA User Manual

About This Manual

e

cts
 our
ke
• VPP-1, Charter Document

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design
Specification

• VPP-3.2, Instrument Driver Developers Specification

• VPP-3.3, Instrument Driver Function Panel Specification

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual
Languages

• VPP-4.3.3, VISA Implementation Specification for the G Languag

• VPP-5, VXI Component Knowledge Base Specification

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-8, VXI Module/Mainframe to Receiver Interconnection

• VPP-9, Instrument Vendor Abbreviations

Customer Communication
National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop with
products, and we want to help if you have problems with them. To ma
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.
NI-VISA User Manual xii © National Instruments Corporation

© National Instruments Corporation 1-1
Chapter

1
Introduction
 to
e

 to
e

tain
 the

,
e

rt,

u
This chapter discusses how to use this manual, lists what you need
get started, and contains a brief description of the VISA Library. Th
National Instruments implementation of VISA is known as NI-VISA.

How to Use This Manual
This manual provides a sequential introduction to setting up a system
use VISA and then using and programming the environment. Pleas
gather all the components described in the next section, What You Need
to Get Started. The Read Me First document included with your kit
explains how to install and set up your system.

Once you have set up your system, you can use Chapter 2 to guide
yourself through some simple examples. Chapters 3 through 8 con
more in-depth information about the different elements that make up
VISA system.

What You Need to Get Started
❑ Appropriate hardware, in the form of a National Instruments GPIB

GPIB-VXI, MXI/VXI or serial interface board. For serial support, th
computer’s standard serial ports are sufficient.

❑ NI-488.2 and/or NI-VXI installed on your system. For serial suppo
the system’s serial drivers are sufficient.

❑ NI-VISA distribution media

❑ If you have a GPIB-VXI command module from another vendor, yo
need that vendor’s GPIB-VXI VISA component.
NI-VISA User Manual

Chapter 1 Introduction

,

 to

t

A
ble

al

on
nd
A

and

u
ays

h an
m.

Introduction to VISA
The main objective of the VXIplug&play Systems Alliance is to
increase ease of use for end users of VXI technology through open
multivendor VXI systems. The alliance members share a common
vision for multivendor systems architecture, encompassing both
hardware and software. This common vision enables the members
work together to define and implement standards for system-level
issues beyond the scope of the VXIbus specifications.

As a step toward industry-wide software compatibility, the alliance
developed one specification for I/O software—the Virtual Instrumen
System Architecture, or VISA. The VISA specification defines a
next-generation I/O software standard not only for VXI, but also for
GPIB and serial interfaces. With the VISA standard endorsed by
over 35 of the largest instrumentation companies in the industry
including Tektronix, Hewlett-Packard, and National Instruments, VIS
unifies the industry to make software interoperable, reusable, and a
to stand the test of time. Before VISA, there were many different
commercial implementations of I/O software for VXI, GPIB, and seri
interfaces; however, none of these I/O software products were
standardized or interoperable.

When the VISA standard was initially endorsed, commercial VISA
products were not yet available. To quickly realize the benefits of
VXI plug&play, the alliance developed the VISA Transition Library
(VTL) specification. The VTL reflected the alliance’s strategy to
deliver multivendor software interoperability, while at the same time
moving the entire industry towards a common, robust VISA foundati
for the future. Software written to VTL, such as instrument drivers a
executable soft front panels, will also run on present and future VIS
implementations without modification.

All VXI plug&play products are classified within a framework. The
concept of a framework was developed by the VXIplug&play Systems
Alliance to categorize operating systems, programming languages,
I/O software libraries to bring the most useful products to the most
end-users. A framework is a logical grouping of the choices that yo
face when designing a test and measurement system. You must alw
choose an operating system and a programming language along wit
application development environment (ADE) when building a syste
There are tradeoffs associated with each of these decisions; many
configurations are possible. The VXIplug&play Systems Alliance
NI-VISA User Manual 1-2 © National Instruments Corporation

Chapter 1 Introduction

ing
ns
rk.

ts

A

grouped the most popular operating systems, ADEs, and programm
languages into distinct frameworks and defined in-depth specificatio
to guarantee interoperability of the components within each framewo

This manual describes how to use NI-VISA, the National Instrumen
implementation of the VISA I/O standard, in any environment using
LabWindows™/CVI, any ANSI C compiler, or Microsoft Visual Basic.
NI-VISA currently supports the frameworks and programming
languages shown in Table 1-1. For information on programming VIS
from LabVIEW, refer to the VISA documentation included with your
LabVIEW software.

Table 1-1. NI-VISA Support

Operating System Programming Language/
Environment

Framework

Windows 3.x LabWindows/CVI, ANSI C,
Visual Basic

WIN

LabVIEW GWIN

Windows 95 LabWindows/CVI, ANSI C,
Visual Basic

WIN95

LabVIEW GWIN95

Windows NT LabWindows/CVI, ANSI C,
Visual Basic

WINNT

LabVIEW GWINNT

Solaris 1.x

Solaris 2.x

LabWindows/CVI, ANSI C SUN

LabVIEW GSUN

HP-UX 9

HP-UX 10

ANSI C, LabWindows/CVI* HPUX

LabVIEW GHPUX
© National Instruments Corporation 1-3 NI-VISA User Manual

Chapter 1 Introduction

d

,
You may find that programming with NI-VISA is not significantly
different from programming with the I/O software products that are
currently available. However, the programming concepts, model, an
paradigm that NI-VISA uses create a solid foundation for taking
advantage of VISA’s more powerful features in the future.

Mac 68K

Mac PPC

ANSI C **

LabVIEW **

* Although the LabWindows/CVI development environment is not available on HP-UX
the run-time libraries are. Therefore, a LabWindows/CVI application developed on
another framework can be ported to HP-UX without modification.

**This framework is not defined by the VXIplug&play Systems Alliance, but is still
supported by NI-VISA.

Table 1-1. NI-VISA Support (Continued)

Operating System Programming Language/
Environment

Framework
NI-VISA User Manual 1-4 © National Instruments Corporation

© National Instruments Corporation 2-1
Chapter

2
Introductory Programming
Examples

he

re

e

ed
he
 a

g
This chapter introduces some examples of common communication
between instruments. To help you become comfortable with VISA, t
examples avoid VISA terminology. Chapter 3, VISA Overview, looks at
these examples again but using VISA terminology and focusing mo
on how they explain the VISA model.

Note: The examples in this chapter show C source code. You can find the sam
examples in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example of Message-Based Communication
Serial, GPIB, and VXI systems all have a definition of message-bas
communication. In GPIB and serial, the messages are inherent in t
design of the bus itself. For VXI, the messages actually are sent via
protocol known as word serial, which is based on register
communication. In either case, the end result is sending or receivin
strings.

Example 2-1 shows the basic steps in any VISA program.
NI-VISA User Manual

Chapter 2 Introductory Programming Examples
Example 2-1
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL,

VI_NULL, &instr);

/* Set the timeout for message-based communication */

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Ask the device for identification */

status = viWrite(instr, "*IDN?", 5, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Process data */

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

NI-VISA User Manual 2-2 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

ne

s
u

elf
d

g

e at

led

t

the

 are

d

ice
es

Example 2-1 Discussion
We can break down Example 2-1 into the following steps.

1. Begin by initializing the VISA system. For this task you use
viOpenDefaultRM() , which opens a communication channel
with VISA itself. This channel has a purpose similar to a telepho
line. The function call is analogous to picking up the phone and
dialing the operator. From this point on, the phone line connect
you to the driver. Any communication on the line is between yo
and the driver only. Chapter 3, VISA Overview, has more details
about viOpenDefaultRM() , but for now it is sufficient for you to
understand that the function initializes VISA and must be the first
VISA function called in your program.

2. Now you must open a communication channel to the device its
using viOpen() . Notice that this function uses the handle returne
by viOpenDefaultRM() to identify the VISA driver. You then
specify the address of the device you want to talk to. Continuin
with the phone analogy, this is like asking the operator to dial a
number for you. In this case, you want to address a GPIB devic
primary address 1 on the GPIB0 bus. The value for x in the GPIBx
token (GPIB0 in this example) indicates which GPIB board you
want. This means that you can have multiple GPIB boards instal
in the computer, each controlling independent buses. For more
information on address strings, viOpen() , and
viOpenDefaultRM() , see Chapter 6, VISA Resource Manager.

The two VI_NULL s following the address string are not importan
at this time. They specify that the session should be initialized
using VISA defaults. Finally, viOpen() returns the
communication channel to the device in the parameter instr .
From now on, whenever you want to talk to this device, you use
instr variable to identify it. Notice that you do not use the
defaultRM handle again. The main use of defaultRM is to open
channels to devices. You do not use this handle again until you
ready to end the program.

3. At this point you need to set a timeout value for message-base
communication. A timeout value is important in message-based
communication to determine what should happen when the dev
stops communicating. VISA has a common function to set valu
such as these: viSetAttribute() . This function sets values such
as timeout and the termination character for the communication
channel. In this example, notice that the function call to
© National Instruments Corporation 2-3 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

h

sing

 in.

 the

l

hod

ow
e
viSetAttribute() sets the timeout to be 5 s (5000 ms) for bot
reading and writing strings.

4. Now that you have the communication channel set up, you can
perform string I/O using the viWrite() and viRead() functions.
Notice that this is the section of the programming code that is
unique for message-based communication. Opening
communication channels, as described in steps 1 and 2, and clo
the channels, as described in step 5, are the same for all VISA
programs. The parameters that these calls use are relatively
straightforward.

a. First you identify which device you are talking to with instr .

b. Next you give the string to send, or what buffer to put the
response in.

c. Finally, specify the number of characters you are interested

For more information on these functions, see Chapter 4,
Message-Based Communication. Also refer to the NI-VISA
Programmer Reference Manual or to the NI-VISA online help.

5. When you are finished with your device I/O, you can close the
communication channel to the device with the viClose()
function.

Notice that the program shows a second call to viClose() . When
you are ready to shut down the program, or at least close down
VISA driver, you use viClose() to close the communication
channel returned by viOpenDefaultRM() .

Example of Register-Based Communication

Note: You can skip over this section if you are exclusively using GPIB or seria
communication. Register-based programming applies only to VXI or
GPIB-VXI.

VXI has two standard methods for accessing registers. The first met
uses High-Level Access functions. You can use these functions to
specify the address to access; the functions then take care of the
necessary details to perform the access, from mapping an I/O wind
to checking for failures. The drawback to using these functions is th
amount of software overhead associated with them.
NI-VISA User Manual 2-4 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

ss
e is
ister

s
 user
To reduce the overhead, VISA also has Low-Level Access functions.
These functions break down the tasks done by the High-Level Acce
functions and let the program perform each task itself. The advantag
that you can optimize the sequence of calls based on the style of reg
I/O you are about to perform. However, you must be more
knowledgeable about how register accesses work. In addition, you
cannot check for errors easily. The following example shows how to
perform register I/O using the High-Level Access functions, which i
the method we recommend for new users. If you are an experienced
or understand register I/O concepts, you can use the Low-Level Access
Operations section in Chapter 5, Register-Based Communication.

Note: Examples 2-2 through 2-4 use bold text to distinguish lines of code that
are different from the other examples in this chapter.

Example 2-2
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt16 deviceID; /* To store the value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Addr 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, " VXI0::16::INSTR ", VI_NULL,

VI_NULL, &instr);

/* Read the Device ID, and write to memory in A24 space */

status = viIn16(instr, VI_A16_SPACE, 0, &deviceID);

status = viOut16(instr, VI_A24_SPACE, 0, 0x1234);
© National Instruments Corporation 2-5 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

r

er
 the
le

s

ons

e
s,

g

t to

 and
e

his
,
/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-2 Discussion
The general structure of this example is very similar to that of
Example 2-1. For this reason, we merely point out the basic
differences as denoted in bold text:

• A different address string is used for the VXI device.

• The string functions from Example 2-1 are replaced with registe
functions.

The address string is still the same format as the address string in
Example 2-1, but it has replaced the GPIB with VXI. Again, rememb
that the difference in the address string name is the extent to which
specific interface bus will be important. Indeed, since this is a simp
string, it is possible to have the program read in the string from a
configuration file. Thus, the program can be compiled and is still
portable to different platforms, such as from a GPIB-VXI to a MXIbu
board.

As you can see from the programming code, you use different functi
to perform I/O with a register-based device. The functions viIn16()
and viOut16() read and write 16-bit values to registers in either th
A16, A24, or A32 space of VXI. As with the message-based function
you start by specifying which device you want to talk to by supplyin
the instr variable. You then identify the address space you are
targeting, such as VI_A16_SPACE.

The next parameter warrants close examination. Notice that we wan
read in the value of the Device ID register for the device at logical
address 16. Logical addresses start at offset 0xC000 in A16 space,
each logical address gets 0x40 bytes of address space. Because th
Device ID register is the first address within that 0x40 bytes, the
absolute address of the Device ID register for logical address 16 is
calculated as follows:

0xC000 + (0x40 * 16) = 0xC400

However, notice that the offset we supplied was 0. The reason for t
is that the instr parameter identifies which device you are talking to
NI-VISA User Manual 2-6 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

elf.
, or

ng
XI
000

ce’s
ss.

r
ller
ly
s,
gh

itly
r an

for

vent
r
n

e to
nt
and therefore the driver is able to perform the address calculation its
The 0 indicates the first register in the 0x40 bytes of address space
the Device ID register. The same holds true for the viOut16() call.
Even in A24 or A32 space, although it is possible that you are talki
to a device whose memory starts at 0x0, it is more likely that the V
Resource Manager has provided some other offset, such as 0x200
for the memory. However, because instr identifies the device, and the
Resource Manager has told the driver the offset address of the devi
memory, you do not need to know the details of the absolute addre
Just provide the offset within the memory, and VISA does the rest.

Again, when you are done with the register I/O, use viClose() to shut
down the system.

Example of Handling Events
When dealing with instrument communication, it is very common fo
the instrument to require service from the controller when the contro
is not actually looking at the device (an asynchronous event, or simp
an event). Examples of this are the service request (SRQ), interrupt
and signals. In VISA, you can handle these and other events throu
either callbacks or a software queue.

Callbacks
Using callbacks, you can have sections of code that are never explic
called by the program, but instead are called by the driver wheneve
event occurs. Due to their asynchronous nature, callbacks can be
difficult to incorporate into a traditional, sequential flow program.
Therefore, we recommend the queuing method of handling events
new users. If you are an experienced user or understand callback
concepts, look at the Callbacks section in Chapter 7, VISA Events.

Queuing
When using a software queue, the driver detects the asynchronous e
but does not alert the program to the occurrence. Instead, the drive
maintains a list of events that have occurred so that the program ca
retrieve the information later. With this technique, the program can
periodically poll the driver for event information or halt the program
until the event has occurred. Example 2-3 programs an oscilloscop
capture a waveform. When the waveform is complete, the instrume
© National Instruments Corporation 2-7 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

t
generates a VXI interrupt, so the program must wait for the interrup
before trying to read the data.

Example 2-3
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViEventType eventType; /* To identify event */

ViEvent eventData; /* To hold event info */

ViUInt16 statID; /* Interrupt Status ID */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL,

VI_NULL, &instr);

/* Enable the driver to detect the interrupts */

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE,

VI_NULL);

/* Send the commands to the oscilloscope to capture the */

/* waveform and interrupt when done */

status = viWaitOnEvent(instr, VI_EVENT_VXI_SIGP, 5000,

&eventType, &eventData);

if (status < VI_SUCCESS) {

/* No interrupts received after 5000 ms timeout */

viClose(defaultRM);

return -1;

}

NI-VISA User Manual 2-8 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

ns

s
s

 that
is
e
 it
ed

ks

ase
om
/* Obtain the information about the event and then destroy */

/* the event. In this case, we want the status ID from the */

/* interrupt. */

status = viGetAttribute(eventData, VI_ATTR_SIGP_STATUS_ID,

&statID);

status = viClose(eventData);

/* Read the data from the instrument and process it. */

/* Stop listening to events */

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-3 Discussion
As you can see, this programming code presents some new functio
you need to use. The first two functions you will notice are
viEnableEvent() and viDisableEvent() . These functions tell the
VISA driver which events to listen for—in this case the
VI_EVENT_VXI_SIGP , or VXI Signal Processor events. These event
cover both VXI interrupts and VXI signals. In addition, these function
tell the driver how to handle the events when they occur. In this
example, the driver is instructed to queue (VI_QUEUE) the events until
asked for them. Notice that instr is also supplied to the functions. This
shows that the VISA driver performs all event handling on a
per-communication-channel basis.

When the driver is ready to handle events, you are free to write code
will result in an event being generated. In the example above, this
shown as a comment block because the exact code depends on th
device. However, after you have set the device up to interrupt when
is ready, the program must wait for the interrupt. This is accomplish
by the viWaitOnEvent() function. Here you specify what events you
are waiting for and how long you want to wait. The program then bloc
until the event occurs. Therefore, after the viWaitOnEvent() call is
finished, either it has timed out (5 s in the above example) or it has
caught the interrupt. After some error checking to determine which c
is true and whether it was successful, you can obtain information fr
© National Instruments Corporation 2-9 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

e

ut
with
he
ed

,
 the
A
ory

 the

re a
the event through viGetAttribute() . When you are finished with the
event data structure (eventData), destroy it by calling viClose() on
it. You can now continue with the program and retrieve the data. Th
rest of the program is the same as the previous examples.

Notice the difference in the way you shut down the program if a timeo
has occurred. You do not need to close the communication channel
the device, but only with the VISA driver. You can do this because t
VISA specification requires that the driver close any channels open
off a channel to the driver (defaultRM) when the driver channel is
closed. As a result, when you need to shut down a program quickly
such as in the case of an error, you can simply close the channel to
driver and VISA handles the rest of the details for you. However, VIS
does not clean up anything not associated with VISA, such as mem
you have allocated. You are still responsible for those items.

Example of Locking
Occasionally you may need to prevent other applications from using
same resource that you are using. VISA has a service called locking that
you can use to gain exclusive access to a resource. VISA also has
another locking option in which you can have multiple sessions sha
lock. Because lock sharing is an advanced topic that may involve
inter-process communication, see the Lock Sharing section in
Chapter 8, VISA Locks, for more information. The following example
uses the simpler form, the exclusive lock, to prevent other VISA
applications from modifying the state of the specified serial port.

Example 2-4
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);
NI-VISA User Manual 2-10 © National Instruments Corporation

Chapter 2 Introductory Programming Examples
if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with Serial Port 1 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, " ASRL1::INSTR ", VI_NULL,

VI_NULL, &instr);

/* Set the timeout for message-based communication */

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Lock the serial port so that nothing else can use it */

status = viLock(instr, VI_EXCLUSIVE_LOCK, 5000, VI_NULL,

VI_NULL);

/* Set serial port settings as needed */

/* Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit*/

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD, 2400);

status = viSetAttribute(instr, VI_ATTR_ASRL_DATA_BITS, 7);

/* Ask the device for identification */

status = viWrite(instr, "*IDN?", 5, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Unlock the serial port before ending the program */

status = viUnlock(instr);

/* Process data */

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 2-11 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

ing

nt is

t

n to
ur
ion,

e

am

Example 2-4 Discussion
As you can see, the program does not differ with respect to controll
the instrument. The ability to lock and unlock the resource simply
involves inserting the viLock() and viUnlock() operations around
the code that you want to ensure is protected, as far as the instrume
concerned.

To lock a resource, you use the viLock() operation on the session
to the resource. Notice that the second parameter is
VI_EXCLUSIVE_LOCK. This parameter tells VISA that you want this
session to be the only session that can access the device. The nex
parameter, 5000 , is the time in milliseconds you are willing to wait for
the lock. For example, another program may have locked its sessio
the resource before you. Using this timeout feature, you can tell yo
program to wait until either the other program has unlocked the sess
or 5 s have passed, whichever comes first.

The final two parameters are used in the lock sharing feature of
viLock() and are discussed further in Chapter 8. For most
applications, however, these parameters are set to VI_NULL . Notice that
if the viLock() call succeeds, you then have exclusive access to th
device. Other programs do not have access to the device at all.
Therefore, you should hold a lock only for the time you need to progr
the device, especially if you are designing a VXIplug&play instrument
driver. Failure to do so may cause other applications to block or
terminate with a failure.

To end the example, the application calls viUnlock() when it has
acquired the data from the instrument. At this point, the resource is
accessible from any other session in any application.
NI-VISA User Manual 2-12 © National Instruments Corporation

© National Instruments Corporation 3-1
Chapter

3
VISA Overview
to
is
gh

n

XI,

an
IB
 to
the
ss

he
e
This chapter contains an overview of the VISA Library.

Introduction
The history of instrumentation reached a milestone with the ability
communicate with an instrument from a remote computer. Before th
time, you had to perform data collection and analysis manually throu
the controls on the instrument’s front panel. Controlling instruments
programmably brought a great deal of power and flexibility with the
capability to control devices faster and more accurately without the
need for human supervision. As time went on, the substantial
programming task was alleviated by application development
environments such as LabVIEW and LabWindows/CVI. These
applications increased productivity, but instrumentation system
developers were still faced with the details of programming the
instrument or the device interface bus.

The VISA Library significantly reduces the time and effort involved i
programming different interfaces. Instead of using a different
Application Programmer’s Interface (API) devoted to each interface
bus, you can use the VISA API whether your system uses a GPIB, V
GPIB-VXI, or serial controller.

As an example, consider the case of the GPIB-VXI controller. You c
use this device to communicate with VXI devices, but through a GP
cable. In other words, you use a GPIB interface with GPIB software
send commands to VXI devices. There is no way for you to ignore
interface through which you must communicate. If you want to acce
the registers on the VXI device, you must use GPIB string
communication to ask the GPIB-VXI to perform this action. Indeed, t
specification of the GPIB-VXI (VXI-5) does not even standardize th
commands necessary to do this task.
NI-VISA User Manual

Chapter 3 VISA Overview

,

learn.

string

s of

w
 for

 it
.2
at
ply

 be

ill
ands
Objectives of VISA
The main objective of the VXIplug&play Systems Alliance is to
increase ease of use for end users of VXI technology through open
multivendor VXI systems. Instrument programmers need a software
architecture that exports the capabilities of the devices, not the interface
bus. In addition, they need to be consistent across the devices and
interface buses. Realizing these goals results in a simpler model to
understand and reduces the number of functions the user needs to

Using the example of the GPIB-VXI, a software driver that satisfies
these goals should be capable of sending and receiving messages (
communication) to and from message-based devices. In addition,
the communication functions should be the same, regardless of the
interface through which these messages are sent. Any functionality
that the device exports—such as message or register
communication—should be accessible regardless of the capabilitie
the interface bus. Moreover, you should be able to access this
functionality through the same functions regardless of the interface bus
you are using.

With the vast number of choices in instrumentation and software no
available, most users do not want to be limited to a specific vendor
their systems. Instead, they prefer the freedom to select the best
instruments and software available from multiple vendors and have
all work together with minimal effort. The IEEE 488.1 and IEEE 488
standards for GPIB and the IEEE 1155 standard for VXI ensured th
the hardware would be interoperable, but such standards did not ap
to the software. Therefore, the ideal new driver architecture should
a standard adopted by as many of the major vendors as possible to
ensure that any code written for your instrument is portable across
vendors as well as operating systems.

Finally, most instruments export a set of commands to which they w
respond. Because the instrument needs to be flexible, these comm
are often primitive functions of the device and require several
commands to group them together so that the device can perform
common tasks. As a result, programmers are faced with a lot of
overhead. Rather than making a simple request to get the data, one must
issue a series of commands to do task A, do task B, and so on, prior to
making the actual request to get the data.
NI-VISA User Manual 3-2 © National Instruments Corporation

Chapter 3 VISA Overview

t of
de

 up
,
ted

r

tion

r
ese

g

es

to

A

 of
u

t the
National Instruments began to ease this burden with the developmen
instrument drivers, which encapsulate these primitive commands insi
functions to perform the common tasks so users get up and running
much faster. The major drawback has been that it is difficult to keep
with the number of new devices that appear in the marketplace. So
another objective for this ideal driver would be for it to be an accep
standard for creating instrument drivers. Then the vendors of the
instruments could create the instrument drivers themselves and be
assured that they can cover most of the systems on the market.

The VXIplug&play Systems Alliance formed to create this software
architecture. The name of the driver is VISA, for Virtual Instrument
Software Architecture. With VISA, you can benefit from the
interface-independence features and the newly defined standard fo
instrument drivers. Future versions of VISA will support more
advanced features, such as finer control of instruments and distribu
across networks.

Programming with VISA
Chapter 2, Introductory Programming Examples, introduced some
examples of how to write code for the VISA driver. However, the
chapter deliberately avoided using VISA terminology to show that
writing programs under VISA can be very straightforward and simila
to software drivers you have used in the past. This section looks at th
examples again, but this time from the perspective of the underlyin
architecture.

Beginning Terminology
Let us begin by defining some terminology. Typical device capabiliti
include sending and receiving messages, responding to register
accesses, requesting service, being reset, and so on. One of the
underlying premises of VISA, as defined in the previous section, is
export the capabilities of the devices—independent of the interface
bus—to the user. Therefore, when creating the building blocks for
VISA, it is important to focus on these basic device capabilities. VIS
encapsulates each of these abilities into a resource.

A resource is simply a complete description of a particular capability
a device. For example, to achieve the ability to write to a device, yo
need a function you can use to send messages—viWrite() . In
addition, there are certain details you need to consider, such as wha
© National Instruments Corporation 3-3 NI-VISA User Manual

Chapter 3 VISA Overview

 to

u can

ed

ers.

hat

sed
 not

ing.

t
,
an
ner

termination character is, if any, and how long the function should try
communicate before timing out. Those of you familiar with this
methodology might recognize this approach as object-oriented (OO)
design. Indeed, VISA is based on OO design. In keeping with the
terminology of OO, we call the functions of these resources operations
and the details, such as the termination character, attributes.

An important resource under VISA is the INSTR Resource. This
resource encapsulates all of the basic resources together so that yo
communicate with the device through a single resource, rather than
multiple ones. The INSTR Resource exports the most commonly us
features of these resources and is sufficient for most instrument driv

Another resource type is the Memory Access, or MEMACC Resource.
The MEMACC Resource allows interface-level accesses, such as t
used by NI-VXI, but is still independent of the actual interface type.

Returning to Example 2-1 in Chapter 2, look at the point where the
program has opened a communication channel with a message-ba
device. Remember that because of interface independence, it does
matter whether the device is GPIB or VXI. You want to send the
identification query, *IDN?, to the device. Because of the possibility
that the device or interface could fail, you want to ensure that the
computer will not hang in the event that no one ever receives the str
Therefore, the first step is to tell the resource to time out after 5 s
(5000 ms):

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

You have just set an attribute (VI_ATTR_TMO_VALUE) of the resource.
From now on, your communication to this resource through this
communication channel (instr) will have a timeout of 5 s.

The fact that you are dealing with an OO-based driver is somewha
irrelevant at this point. As you become more experienced with VISA
you will see more of the benefits of this approach. But for now, you c
see that you can set the timeout with an operation (function) in a man
similar to that used with other drivers. In addition, the operation you
need to remember—viSetAttribute() —is the same operation you
use to set any feature of any resource.

Now you send the string to the device:

status = viWrite(instr, "*IDN?", 5, &retCount);
NI-VISA User Manual 3-4 © National Instruments Corporation

Chapter 3 VISA Overview

u

 is

ns
ns to

e
 be

the

out

 use

he
ry
Again, this is a familiar approach to programming. You use a write
operation to send a string to a device. For now, it is sufficient for yo
to understand that you can use a single operation—viWrite() —to
send a message to a device, regardless of the interface to which it
connected.

Continuing, you read back the string with a read operation:

status = viRead(instr, buffer, 200, &retCount);

See Chapter 4, Message-Based Communication, for more information.

Communication Channels
The examples from Chapter 2 used an operation called viOpen() to
open communication channels with the instruments. In VISA
terminology, this channel is known as a session. A session connects you
to the resource you addressed in the viOpen() operation and keeps
your communication and attribute settings unique from other sessio
to the same resource. In VISA, a resource can have multiple sessio
it from the same program and even from other programs
simultaneously. Therefore you must consider some things about th
resource to be local, that is, unique to the session, and other things to
global, that is, common for all sessions to the resource.

If you look at the descriptions of the various attributes supported by
VISA resources, you will see that some are marked global (such as
VI_ATTR_INTF_TYPE) and others are marked local (such as
VI_ATTR_TMO_VALUE). For example, the interface bus that the
resource is using to communicate with the device
(VI_ATTR_INTF_TYPE) is the same for everyone talking to the
resource and is therefore a global attribute. However, different
programs may have different timeout requirements and so the time
value (VI_ATTR_TMO_VALUE) for communication is a local attribute.

Again, look at Example 2-1. To open communication with the
instrument, that is, to create a session to the INSTR Resource, you
the viOpen() operation as shown below:

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL,

VI_NULL,&instr);

In this case, the interface to which the instrument is connected is
important, but only as a means to uniquely identify the instrument. T
code above references a GPIB device on bus number 0 with prima
© National Instruments Corporation 3-5 NI-VISA User Manual

Chapter 3 VISA Overview

t for

ion
e

d

ee
u

ve as

d

 to
 to

go

address 1. The access mode and timeout values for viOpen() are both
VI_NULL . Other values are defined, but VI_NULL is recommended for
both new users and all instrument drivers.

However, notice the statement has two sessions in the parameter lis
viOpen() —defaultRM and instr . Why do you need two sessions?
As you will see in a moment, viOpen() is an operation on a resource
known as the Resource Manager, so you must have a communicat
channel to this resource. However, what you want is a session to th
instrument; this is what is returned in instr .

For the entire duration that you communicate with this GPIB
instrument, you use the session returned in instr as the
communication channel. When you are finished with the
communication, you need to close the channel. This is accomplishe
through the viClose() operation as shown below:

status = viClose(instr);

At this point, the communication channel is closed but you are still fr
to open it again or open a session to another device. Notice that yo
do not need to close a session to open another session. You can ha
many sessions to different devices as you want.

The Resource Manager
The previous section briefly mentioned the Resource Manager
Resource. What exactly is a Resource Manager? If you have worke
with VXI, you are familiar with the VXI Resource Manager. Its job is
to search the VXI chassis for instruments, configure them, and then
return its findings to the user. The VISA Resource Manager has a
similar function. It scans the system to find all the devices connected
it through the various interface buses and then controls the access
them. Notice that the Resource Manager simply keeps track of the
resources and creates sessions to them as requested. You do not
through the Resource Manager with every operation defined on a
resource.

Again referring to Example 2-1, notice that the first line of code is a
function call to get a session to the Default Resource Manager:

status = viOpenDefaultRM(&defaultRM);

Note: viOpenDefaultRM() is a function call, not an operation call.
NI-VISA User Manual 3-6 © National Instruments Corporation

Chapter 3 VISA Overview

sion

d by

rce
In
o
 You

d
s of

able

es

 ID

ter
16

 of
ory

on
An operation is a property of a resource that you call by way of a
session. The viOpenDefaultRM() function returns a unique session to
the Default Resource Manager, but does not require some other ses
to operate. Therefore this function is not a property of any
resource—not even the Resource Manager Resource. It is provide
the VISA driver itself.

Now that you have a communication channel (session) to the Resou
Manager, you can ask it to create sessions to instruments for you.
addition to this, VISA also defines operations that can be invoked t
query the Resource Manager about other resources it knows about.
can use the viFindRsrc() operation to give the Resource Manager a
search string, known as a regular expression, for instruments in the
system. See Chapter 6, VISA Resource Manager, for more information
about viFindRsrc() .

Register Communication
Now that you know more about communicating with message-base
devices, you can move on to register communication. The only type
devices VISA supports that can export register accesses are VXI
devices. However, VISA has defined these resources to be expand
to other types of devices in the future.

Refer to Example 2-2 in Chapter 2. You open communication to the
Resource Manager and the resource in the same manner as in
Example 2-1, but this time you specify a VXI device. This example us
what are known as the High-Level Access methods to read and write
registers. For example, if you want to read a 16-bit register—say the
register of the device—use the following call:

status = viIn16(instr, VI_A16_SPACE, 0x0, &deviceID);

Notice that the offset requested is 0. This is the offset of the ID regis
for a VXI device, but it is not the absolute address of the register in A
space. This is because instr is a session to the instrument, not to the
VXI memory space; therefore, all offsets are from the base address
the instrument. For example, if this same device also shared its mem
in A24 space at 0x200000, you could write to the first memory locati
of this shared memory as follows:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);
© National Instruments Corporation 3-7 NI-VISA User Manual

Chapter 3 VISA Overview

00.

ad or
ows
l
 do

d

u

s
 add

to
elf
sult
al
e

XI
ur
es.
on.
Thus, the offset when using an INSTR resource is 0x0, not 0x2000
VISA also supports sessions to the interface bus itself via the
MEMACC Resource. Refer to Chapter 5, Register-Based
Communication, for more information about this resource.

These methods are known as the High-Level Access methods to
distinguish them from the Low-Level Access methods. The High-Level
Access methods encapsulate all the necessary code to perform a re
a write of a register, including mapping any necessary access wind
and handling errors, such as a bus error. In contrast, the Low-Leve
Access methods do not. Instead, you map the windows yourself and
not monitor for errors. Refer to Chapter 5, Register-Based
Communication, for more information about accessing register-base
devices with both the High-Level Access and the Low-Level Access
methods.

Example of Interface Independence
Now that you are more familiar with the architecture of the VISA
driver, look at the GPIB-VXI interface board to see if VISA gives yo
independence from the interface connecting the instruments.

The GPIB-VXI device translates GPIB bus communication to VXIbu
communication and vice versa. Its main purpose is to let GPIB users
VXI devices to their systems inexpensively. Using GPIB driver
software, you can communicate with VXI devices using messages, the
same way you program standalone GPIB instruments.

But how do you perform register accesses to the VXI devices? Up
this point, you were required to send messages to the GPIB-VXI its
and ask it to perform the register access. It would then return the re
of the I/O in another string. For example, when talking to the Nation
Instruments GPIB-VXI/C with NI-488.2, the register access looks lik
the following when using NI-488 function calls:

dev = ibdev(boardID, PrimAddr, SecAddr, TMO, EOT, EOS);

status = ibwrt(dev, "A24 #h200000, #h1234", cnt);

If you are using NI-488.2 routines, the same call is:

Send(boardID, Address, "A24 #h200000, #h1234", DABend);

If you had ever planned to move your code to a MXI or embedded V
controller solution, you would spend a great deal of time changing yo
GPIB calls to VXI calls, especially when considering register access
VISA has been designed to eliminate problems such as this limitati
NI-VISA User Manual 3-8 © National Instruments Corporation

Chapter 3 VISA Overview

ree

 you
nt
If you are talking to a VXI instrument, you can perform register I/O
regardless of whether you are connected via GPIB, MXI, or an
embedded VXI computer. In addition, the code is the same for all th
cases. Therefore the code for writing to the A24 register through a
GPIB-VXI is now precisely the same as given previously in the Register
Communication section:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);

The fact that GPIB messages are necessary is no longer important;
can let the driver take care of those details. Program your instrume
based on its capabilities.
© National Instruments Corporation 3-9 NI-VISA User Manual

© National Instruments Corporation 4-1
Chapter

4
Message-Based
Communication

ata
ilar
nt.
less

es

ol

sed

atted
n.

h
This chapter shows how to use the VISA library in message-based
communication.

Introduction
Whether you are using RS-232, GPIB, or VXI, message-based
communication is a standard protocol for controlling and receiving d
from instruments. Because most message-based devices have sim
capabilities, it is natural that the driver interface should be consiste
Under VISA, controlling message-based devices is the same regard
of whether those devices are serial, GPIB, or VXI instruments.

VISA message-based communication includes the Basic I/O Servic
and the Formatted I/O Services from within the VISA Instrument
Control Resource (INSTR). All sessions to a VISA Instrument Contr
Resource (INSTR) opened using viOpen() have full message-based
communication capabilities. Of course, if the device is a register-ba
VXI device, the message-based operations return an error code
(VI_ERROR_NSUP_OPER) to indicate that this device does not support
the operations, although the session still provides access to them. This
chapter discusses the uses of the Basic I/O Services and the Form
I/O Services provided by the INSTR Resource in a VISA applicatio

Basic I/O Services
The VISA Instrument Control Resource lets a controller interact wit
the device that it is associated with by providing the controller with
services to do the following:

• Send blocks of data to the device

• Request blocks of data from the device

• Send the device clear command to the device

• Trigger the device

• Find information about the status of the device
NI-VISA User Manual

Chapter 4 Message-Based Communication

A

s.
not
,
has

put
ent

ured.

t
ata

 of
 1.
but
 with
ret

ider
nism
r,

een

nt.
 in

at
 and
IB

 the
Note: For serial instruments, the I/O protocol must be set to VI_ASRL_488 for the
clear, trigger, and status services that are to be enabled.

The following sections describe the operations provided by the VIS
Instrument Control Resource for the Basic I/O Services.

Synchronous Read/Write Services
The most straightforward of the operations are viRead() and
viWrite() , which perform the actual receiving and sending of string
Notice that these operations look upon the data as a string and do
interpret the contents. For this reason, the data could be messages
commands, or binary encoded data, depending on how the device
been programmed. For example, the IEEE 488.2 command *IDN? is a
message that is sent in ASCII format. However, an oscilloscope
returning a digitized waveform may take each 16-bit data point and
it end to end as a series of 8-bit characters. The following code segm
shows a program requesting the waveform that the device has capt

status =viWrite(instr, "READ:WAVFM:CH1", 14, &retCount);

status =viRead(instr, buffer, 1024, &retCount);

Now the character array buffer contains the data for the waveform, bu
you still do not know how the data is formatted. For example, if the d
points were 1, 2, 3, ...the buffer might be formatted as “1,2,3,...”.
However, if the data were binary encoded 8-bit values, the first byte
buffer would be 1—not the ASCII character 1, but the actual value
The next byte would be neither a comma nor the ASCII character 2,
the actual value 2, and so on. Refer to the documentation that came
the device for information on how to program the device and interp
the responses.

The various ways that a string can be sent is the next issue to cons
in message-based communication. For example, the actual mecha
for sending a byte differs drastically between GPIB and VXI; howeve
both have similar mechanisms to indicate when the last byte has b
transferred. Under both systems, a device can specify an actual
character, such as linefeed, to indicate that no more data will be se
This is known as the End Of String (EOS) character and is common
older GPIB devices. The obvious drawback to this mechanism is th
you must send an extra character to terminate the communication,
you cannot use this character in your messages. However, both GP
and VXI can specify that the current byte is the last byte. GPIB uses
EOI line on the bus, and VXI uses the END bit in the Word Serial
command that encapsulates the byte.
NI-VISA User Manual 4-2 © National Instruments Corporation

Chapter 4 Message-Based Communication

o

ns

ite
om
turn
n

ng

that

t
You need to determine how to inform the driver which mechanism t
use. As was discussed in Chapter 3, VISA Overview, VISA uses a
technique known as attributes to hold this information. For example, to
tell the driver to use the EOI line or END bit, you set the
VI_ATTR_SEND_END_EN attribute to true.

status =viSetAttribute(instr, VI_ATTR_SEND_END_EN,

VI_TRUE);

You can terminate reads on a carriage return by using the following
code.

status =viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

status =viSetAttribute(instr, VI_ATTR_TERMCHAR_EN,

VI_TRUE);

Refer to the NI-VISA online help or the NI-VISA Programmer
Reference Manual for a complete list and description of the available
attributes.

Asynchronous Read/Write Services
In addition to the synchronous read and write services, VISA has
operations for asynchronous I/O. The functionality of these operatio
is identical to that of the synchronous ones; therefore, the topics
covered in the previous section apply to asynchronous read and wr
operations as well. The main difference is that a job ID is returned fr
the asynchronous I/O operations instead of the transfer status and re
count. You then wait for an I/O completion event, from which you ca
get that information.

Note: You must enable the session for the I/O completion event before beginni
an asynchronous transfer.

One other difference is the timeout attribute, VI_ATTR_TMO_VALUE.
This attribute may or may not apply to asynchronous operations,
depending on the implementation. If you want to ensure that
asynchronous operations never time out, even on implementations
do use the timeout attribute, set the attribute value to
VI_TMO_INFINITE . If you want to ensure that asynchronous
operations do not last beyond a certain period of time, even on
implementations that do not use the timeout attribute, you should abor
the I/O using the viTerminate() operation if it does not complete
within the expected time, as shown in the following code.
© National Instruments Corporation 4-3 NI-VISA User Manual

Chapter 4 Message-Based Communication

l to

t

as

ut

e

 7-1

h

hen
ice
ice
u

ice
he
status = viEnableEvent(instr,VI_EVENT_IO_COMPLETION,

VI_QUEUE,VI_NULL);

status = viWriteAsync(instr,"READ:WAVFM:CH1",14,

&jobID);

status = viWaitOnEvent(instr,VI_EVENT_IO_COMPLETION,

10000, &etype,&event);

if (status < VI_SUCCESS) {

status = viTerminate(instr,VI_NULL,jobID);

/* now the I/O completion event should exist in the

queue */

status = viWaitOnEvent(instr,VI_EVENT_IO_COMPLETION,

0,&etype,&event);

}

As long as an asynchronous operation is successfully posted (if the
return value from the asynchronous operation is greater than or equa
VI_SUCCESS), there will always be exactly one I/O completion even
resulting from the transfer. However, if the asynchronous operation
(viReadAsync() or viWriteAsync()) returns an error code, there
will not be an I/O completion event. In the above example, if the I/O h
not completed in 10 seconds, the call to viTerminate() aborts the I/O
and results in the I/O completion event being generated.

The I/O completion event has attributes containing information abo
the transfer status, return count, and more. For a more complete
description of the I/O completion event and its attributes, refer to th
NI-VISA Programmer Reference Manual or to the NI-VISA online help.
For a more detailed example using asynchronous I/O, see Example
in Chapter 7, VISA Events.

Note: The asynchronous I/O services are not available when programming wit
Visual Basic.

Clear Service
When communicating with a message-based device, particularly w
you are first developing your program, you may need to tell the dev
to clear its I/O buffers so that you can start again. In addition, if a dev
has more information than you need, you may want to read until yo
have everything you need and then tell the device to throw the rest
away. The viClear() operation performs these tasks.

More specifically, the clear operation lets a controller send the dev
clear command to the device it is associated with, as specified by t
NI-VISA User Manual 4-4 © National Instruments Corporation

Chapter 4 Message-Based Communication

ice

4h)

n.

er
rm,

are
r

,

f the
t a
ing

ve
interface specification and the type of device. The action that the dev
takes depends on the interface to which it is connected.

• For a GPIB device, the controller sends the IEEE 488.1 SDC (0
command.

• For a VXI or MXI device, the controller sends the Word Serial
Clear (FFFFh) command.

• For a serial device, the controller sends the string “*CLS\n” . The
I/O protocol must be set to VI_ASRL_488 for this service to be
available to serial devices.

For more details on these clear commands, refer to your device
documentation, the IEEE 488.1 standard, or the VXIbus specificatio

Trigger Service
Most instruments can be instructed to wait until they receive a trigg
before they start performing operations such as generating a wavefo
reading a voltage, and so on. Under GPIB, this trigger is a software
command sent to the device. Under VXI, this could either be a softw
trigger or a hardware trigger on one of the multiple TTL/ECL trigge
lines on the VXIbus backplane.

VISA uses the same operation to perform these actions—
viAssertTrigger() . Which trigger method (software or hardware)
you use is dependent on a combination of an attribute
(VI_ATTR_TRIG_ID) and a parameter to the operation. For example
to send a software trigger by default under either interface, you use
the following code.

status =viSetAttribute(instr, VI_ATTR_TRIG_ID,

VI_TRIG_SW);

status =viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

Of course, you need to set the attribute only once at the beginning o
program, not every time you assert the trigger. If you want to asser
VXI hardware trigger, such as a SYNC pulse, you can use the follow
code.

status =viSetAttribute(instr, VI_ATTR_TRIG_ID,

VI_TRIG_TTL3);

status =viAssertTrigger(instr, VI_TRIG_PROT_SYNC);

Keep in mind that VISA currently uses device triggering. That is, each
call to viAssertTrigger() is associated with a specific device
through the session used in the call. Future versions of VISA will gi
© National Instruments Corporation 4-5 NI-VISA User Manual

Chapter 4 Message-Based Communication

ty

I

e
d a

g
es,

d

s

ing

est.

e
ice

d
 that
 of
you full access to interface triggering, but at this time all functionali
is defined on a per-device basis.

However, the VXI hardware triggers by definition have interface-level
triggering. In other words, you cannot prevent two devices from
receiving a SYNC pulse of TTL3 if both devices are listening to the
line. Therefore, if you need to trigger multiple devices off a single VX
trigger line, you can do this by sending the trigger to any one of the
devices on the line.

Status/Service Request Service
It is fairly common for a device to need to communicate with a
controller at a time when the controller is not planning to talk with th
device. For example, if the device detects a failure or has complete
data acquisition sequence, it may need to get the attention of the
controller. In both GPIB and VXI, this is accomplished through a
Service Request (SRQ). Although the actual technique for deliverin
this service request to the controller differs between the two interfac
the end result is that an event (VI_EVENT_SERVICE_REQ) is received
by the VISA driver. You can find more details on event notification an
handling in Chapter 2, Introductory Programming Examples, and
Chapter 7, VISA Events. At this time, just assume that the program ha
received the event and has a handle to the data through the
eventContext parameter.

Under VISA, the VI_EVENT_SERVICE_REQ event contains no
additional information other than the type of event. Therefore, by us
viGetAttribute() on the eventContext parameter, as shown in the
following code, the program can identify the event as a service requ

status =

viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE,

&eventType);

You can retrieve the status byte of the device by issuing a
viReadSTB() operation. This is especially important because on som
interfaces, such as GPIB, it is not always possible to know which dev
has asserted the service request until a viReadSTB() is performed.
This means that all sessions to devices on the bus with the service
request may receive a service request event. Therefore, you shoul
always check the status byte to ensure that your device was the one
requested service. For example, the following code checks the type
event, performs a viReadSTB() , and then checks the result.
NI-VISA User Manual 4-6 © National Instruments Corporation

Chapter 4 Message-Based Communication

er,
er.
m
r is
he

t,
ent
status = viGetAttribute(eventContext,

VI_ATTR_EVENT_TYPE, &eventType);

if (eventType == VI_EVENT_SERVICE_REQ) {

status = viReadSTB(instr, &statusByte);

if ((status >= VI_SUCCESS) && (statusByte & 0x40)) {

/* Perform action based on Service Request */

}

/* Otherwise ignore the Service Request */

} /* End IF SRQ */

Formatted I/O Services
The Formatted I/O Services perform formatted and buffered I/O for
devices. A formatted write operation writes to a buffer inside the driv
while a formatted read operation reads from a buffer inside the driv
Buffering improves system performance by having the driver perfor
the I/O with the device only at certain times, such as when the buffe
full. The driver is then able to send larger blocks of information to t
device at a time, improving overall throughput.

The buffer operations also provide control over the low-level serial
driver buffers. See the section Controlling the Serial I/O Buffers later
in this chapter for more information on that topic.

Formatted I/O Operations
The main two operations under the formatted I/O services are
viPrintf() and viScanf() . Although this section discusses these
two operations only, this material also applies to other formatted I/O
routines such as viVPrintf() and viVScanf() . These operations
derive their names from the standard C string I/O functions. Like
printf() and scanf() , these operations let you use special format
strings to dynamically create or parse the string. For example, a
common command for instruments is the “Fx” command for function X.
This could be “F1” for volt measurement, “F2” for ohm measuremen
and so on. With formatted I/O, you can select the type of measurem
and use only a single operation to send the string. Consider the
following code segment.
© National Instruments Corporation 4-7 NI-VISA User Manual

Chapter 4 Message-Based Communication

 by
t

get

l

ons

nce
/* Retrieve user's selections. Assume the

variable X holds */

/* the choice from the following menu: */

/* 1) VDC, (2) Ohms, (3) Amps */

status = viPrintf(instr, "F%d", X);

Here, the variable X corresponds to the type of measurement denoted
a number matching the function number for the instrument. Withou
formatted I/O, the result would have been either:

sprintf(buffer, "F%d", X);

viWrite(instr, buffer, strlen(buffer), &retCount);

or
switch(X) {

case 1:

viWrite(instr, "F1", 2, &retCount);

break;

case 2:

viWrite(instr, "F2", 2, &retCount);

break;

.

.

}

In addition, there is an operation viQueryf() that combines the
functionality of a viPrintf() followed by a viScanf() operation.
viQueryf() is used to query the device for information:

status = viQueryf(instr,"*IDN?\n","%s",buf);

As you can see, the formatted I/O approach is the simplest way to
the job done. Because of the variety of modifiers you can use in the
format string, this section does not go into any more detail on these
operations. Please refer either to the NI-VISA online help or to
Chapter 5, Operations, in the NI-VISA Programmer Reference Manua
for more information.

Variable List Operations
You can also use another form of the standard formatted I/O operati
known as Variable List operations: viVPrintf() , viVScanf() , and
viVQueryf() . These functions are identical in their operation to the
ANSI C versions of variable list operations. Please see your C refere
guide for more information.
NI-VISA User Manual 4-8 © National Instruments Corporation

Chapter 4 Message-Based Communication

 I/O
ite

An

m

s.
ard

ore
est
is
he
 to

 If
ded.
he
rds
tion

l

.
Manually Flushing the Formatted I/O Buffers
This section describes flushing issues that are related to formatted
buffers. The descriptions apply to all buffered read and buffered wr
operations. For example, the viPrintf() description applies equally
to other buffered write operations (viVPrintf()). Similarly, the
viScanf() description applies to other buffered read operations
(viVScanf()).

Flushing a write buffer immediately sends any queued data to the
device. Flushing a read buffer discards the data in the read buffer.
empty read buffer guarantees that the next call to viScanf() or a
related operation reads data directly from the device rather than fro
queued data residing in the read buffer.

The easiest way to flush the buffers is with an explicit call to
viFlush() . This operation can actually flush the buffers in two way
The simpler way uses discard flags. These flags tell the driver to disc
the contents of the buffers without performing any I/O to the device. For
example,

status = viFlush(instr, VI_READ_BUF_DISCARD);

However, the flush operation can also complete the current I/O bef
flushing the buffer. For a write buffer, this simply means to send the r
of the buffer to the device. However, for a read buffer, the process
more involved. Because you could be in the middle of a read from t
device (that is, the device still has information to send), it is possible
have the driver check the buffer for an EOS or END bit/EOI signal.
such a value exists in the buffer, the contents of the buffer are discar
However, if the driver can find no such value, it begins reading from t
device until it detects the end of the communication and then disca
the data. This process keeps the program and device in synchroniza
with each other. See the description of the viFlush() operation in the
NI-VISA online help or in the NI-VISA Programmer Reference Manua
for more information.

Automatically Flushing the Formatted I/O Buffers
Although you can explicitly flush the buffers by making a call to
viFlush() , the buffers are flushed implicitly under some conditions
These conditions vary for the viPrintf() and viScanf() operations.
In addition, you can modify the conditions through attributes.
© National Instruments Corporation 4-9 NI-VISA User Manual

Chapter 4 Message-Based Communication

er

e is
d

he
The write buffer is maintained by the viPrintf() , viVPrintf() , and
viVQueryf() (write side) operations. To explicitly flush the write
buffer, you can make a call to the viFlush() operation with a write
flag set.

The standard conditions for automatically flushing the buffer are as
follows.

• Whenever the END indicator is sent. The indicator could be eith
the EOS character or the END bit/EOI line, depending on the
current state of the attributes which select these modes.

• When the write buffer is full.

• In response to a call to viSetBuf() with the VI_WRITE_BUF flag
set.

In addition to these rules, the VI_ATTR_WR_BUF_OPER_MODE attribute
can modify the flushing of the buffer. The default setting for this
attribute is VI_FLUSH_WHEN_FULL, which means that the preceding
three rules apply. However, if the attribute is set to
VI_FLUSH_ON_ACCESS, the buffer is flushed with every call to
viPrintf() and viVPrintf() , essentially disabling the buffering
mode.

The read buffer is maintained by the viScanf() , viVScanf() , and
viVQueryf() (read side) operations. To explicitly flush the read
buffer, you can make a call to the viFlush() operation with a read flag
set. The only rule for automatically flushing the read buffer is in
response to the viSetBuf() operation. However, as with the write
buffer, you can use an attribute to control how to flush the buffer:
VI_ATTR_RD_BUF_OPER_MODE. If the attribute is set to
VI_FLUSH_DISABLE, the buffer is flushed only when an explicit call to
viFlush() is made. If this attribute is set to VI_FLUSH_ON_ACCESS,
the buffer is flushed at the end of every call to viScanf() .

In addition to the preceding rules and attributes, the formatted I/O
buffers of a session to a given device are reset whenever that devic
cleared through the viClear() operation. At such a time, the read an
write buffer must be flushed and any ongoing operation through the
read/write port must be aborted.

Resizing the Formatted I/O Buffers
The read and write buffers, as mentioned previously, can be
dynamically resized using the viSetBuf() operation. Remember that
this operation automatically flushes the buffers, so it is best to set t
NI-VISA User Manual 4-10 © National Instruments Corporation

Chapter 4 Message-Based Communication

y

stem
d.
e

f

t or

ng

cy).

ze

n
size of the buffers before beginning the actual I/O calls. You specif
which buffer you want to modify and then the size of the buffer you
require. It is important to check the return code of this operation
because you may be requesting a buffer beyond the size that the sy
can allocate at the time. If this occurs, the buffer size is not change
For example, to set both the read and write buffers to 8 KB, you us
the following code.

status = viSetBuf(instr, VI_READ_BUF | VI_WRITE_BUF,

8192);

Controlling the Serial I/O Buffers
The viFlush() and viSetBuf() operations also provide a control
mechanism for the low-level serial driver buffers. The default size o
these buffers is 0, which guarantees that all I/O is flushed on every
access. To improve performance, you can alter the size of the outpu
input serial buffers by invoking the viSetBuf() operation with the
VI_ASRL_OUT_BUF or VI_ASRL_IN_BUF flag, respectively. When the
buffer size is non-zero, I/O to serial devices is not automatically
flushed. You can force the output serial buffer to be flushed by invoki
the viFlush() operation with VI_ASRL_OUT_BUF. Alternatively,
you can call viFlush() with VI_ASRL_OUT_BUF_DISCARD to empty
the output serial buffer without sending any remaining data to the
device. You can also call viFlush() with either VI_ASRL_IN_BUF or
VI_ASRL_IN_BUF_DISCARD to empty the input serial buffer (both
flags have the same effect and are provided only for API consisten

Note: Not all VISA implementations may support setting the size of either the
serial input or output buffers. In such an implementation, the viSetBuf()
operation will return a warning. While this should not affect most
programs, you can at least detect this lack of support if a specific buffer si
is required for performance reasons. If serial buffer control is not
supported in a given implementation, we recommend that you use some
form of handshaking (controlled via the VI_ATTR_ASRL_FLOW_CNTRL
attribute), if possible, to avoid loss of data.

When using formatted I/O in conjunction with serial devices, calling
viFlush() on a formatted I/O buffer has the same effect on the
corresponding serial buffer. For example, invoking viFlush() with
VI_WRITE_BUF flushes the formatted I/O output buffer first, and the
the low-level serial output buffer. Similarly, VI_WRITE_BUF_DISCARD
empties the contents of both the formatted I/O and low-level serial
output buffers.
© National Instruments Corporation 4-11 NI-VISA User Manual

Chapter 4 Message-Based Communication

d
Example VISA Message-Based Application
The following is an example VISA application using message-base
communication.

Note: This example shows C source code. You can find the same example in
Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 4-1
#include "visa.h"

int main(void)

{

ViSession defaultRM, instr;

ViUInt32 retCount;

ViChar idnResult[72];

ViChar resultBuffer[256];

ViStatus status;

/* Open Default Resource Manager */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */

viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, &instr);

/* Initialize the timeout attribute to 10 s */

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 10000);

/* Set termination character to carriage return (\r=0x0D) */

viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

/* Don't assert END on the last byte */

viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_FALSE);

/* Clear the device */

viClear(instr);
NI-VISA User Manual 4-12 © National Instruments Corporation

Chapter 4 Message-Based Communication
/* Request the IEEE 488.2 identification information */

viWrite(instr, "*IDN?\n", 6, &retCount);

viRead(instr, idnResult, 72, &retCount);

/* Use idnResult and retCount to parse device info */

/* Trigger the device for an instrument reading */

viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

/* Receive results */

viRead(instr, resultBuffer, 256, &retCount);

/* Close sessions */

viClose(instr);

viClose(defaultRM);

return 0;

}

© National Instruments Corporation 4-13 NI-VISA User Manual

© National Instruments Corporation 5-1
Chapter

5
Register-Based
Communication
ple
h

ISA
 as

ry
th
ory

ch
t

d on
 with

er
th
s
el

A
n to
This chapter shows how to use the VISA library in register-based
communication.

Note: You can skip this chapter if you are using GPIB or serial controllers
exclusively. Register-based programming applies only to VXI or
GPIB-VXI.

Introduction
Register-based devices (RBDs) are a class of devices that are sim
and relatively inexpensive to manufacture. Communication with suc
devices is usually accomplished via reads and writes to registers. V
has the ability to read from and write to individual device registers,
well as a block of registers, through the Memory I/O Services.

In addition to accessing RBDs, VISA also provides support for memo
management of the memory exported by a device. For example, bo
local controllers and remote devices can have general-purpose mem
in A24/A32 space. With VISA, although the user must know how ea
remote device accesses its own memory, the memory managemen
aspects of local controllers are handled through the Shared Memory
operations (viMemAlloc() and viMemFree()). For more information
on this topic, refer to the Shared Memory Operations section later in
this chapter.

With the Memory I/O Services, you access the device registers base
the session to the device. In other words, if a session communicates
a device at VXI logical address 16, you cannot use Memory I/O
Services on that session to access registers on a device at any oth
logical address. The range of address locations you can access wi
Memory I/O Services on a session is the range of address location
assigned to that device. This is true for both High-Level and Low-Lev
Access operations.

To facilitate access to the device registers for multiple devices, VIS
allows you to open a MEMACC (memory access) session. A sessio
NI-VISA User Manual

Chapter 5 Register-Based Communication

rce
R
olute

l,
rt

ve
ice

ake
ng

ed

a MEMACC Resource allows an application to access the entire
memory range for a specified address space. The MEMACC Resou
supports the same high-level and low-level operations as the INST
Resource. The only difference is that all register addresses are abs
addresses in VXIbus address space.

Note: A session to a MEMACC Resource supports only the high-level, low-leve
and resource template operations. A MEMACC session does not suppo
the other INSTR operations.

In VISA, you can choose between two styles for accessing
registers—High-Level Access or Low-Level Access. Both styles ha
operations to read the value of a device register and write to a dev
register, as shown in the following table. In addition, there are
high-level operations designed to read or write a block of data. The
block-move operations do not have a low-level counterpart.

Note: The remainder of this chapter uses XX in the names of some operations to
denote that the information applies to 8-bit, 16-bit, and 32-bit reads and
writes. For example, viIn XX() refers to viIn8() , viIn16() , and
viIn32() .

The following sections show the benefits of each style so you can m
an informed choice of which is more appropriate for your programmi
requirements.

High-Level Access Operations
The High-Level Access (HLA) operations viIn XX() and viOut XX()
have a simple and easy-to-use interface for performing register-bas
communication. The HLA operations in VISA are wholly
self-contained, in that all the information necessary to carry out the

High-Level
Access

High-Level
Block

Low-Level
Access

Read viIn8()
viIn16()
viIn32()

viMoveIn8()
viMoveIn16()
viMoveIn32()

viPeek8()
viPeek16()
viPeek32()

Write viOut8()
viOut16()
viOut32()

viMoveOut8()
viMoveOut16()
viMoveOut32()

viPoke8()
viPoke16()
viPoke32()
NI-VISA User Manual 5-2 © National Instruments Corporation

Chapter 5 Register-Based Communication

s the
ons
on,
th

er:

ace

ss of

XI

rites

 has

e
r

lso
s

,
operation is contained in the parameters of the operation. The HLA
operations also perform all the necessary hardware setup as well a
error detection and handling. There is no need to call other operati
to do any other activity related to the register access. For this reas
you should use HLA operations if you are just becoming familiar wi
the system.

To use viIn XX() or viOut XX() operations to access a register on a
device, you need to have the following information about the regist

• The address space where the register is located. In a VXI interf
bus, for example, the address space can be A16, A24, or A32.

• The offset of the register relative to the device for the specified
address space. You do not need to know the actual base addre
the device, just the offset.

Note: When using the MEMACC Resource, you need to provide the absolute V
address (base + offset) for the register.

The following sample code reads the Device Type register of a VXI
device located at offset 0 from the base address in A16 space, and w
a value to the A24 shared memory space at offset 0x20 (this offset
no special significance).
status = viIn16(instr, VI_A16_SPACE, 0, &retValue);

status = viOut16(instr, VI_A24_SPACE, 0x20, 0x1234);

With this information, the HLA operations perform the necessary
hardware setup, perform the actual register I/O, check for error
conditions, and restore the hardware state. To learn how to perform
these steps individually, see the Low-Level Access operations.

The HLA operations can detect and handle a wide range of possibl
errors. HLA operations perform boundary checks and return an erro
code (VI_ERROR_INV_OFFSET) to disallow accesses outside the valid
range of addresses that the device supports. The HLA operations a
trap and handle any bus errors appropriately and then report the bu
error as VI_ERROR_BERR.

That is all that is really necessary to perform register I/O. For more
examples of HLA register I/O, please see Example 2-2 in Chapter 2
Introductory Programming Examples.
© National Instruments Corporation 5-3 NI-VISA User Manual

Chapter 5 Register-Based Communication

cks

evel
uire
ss

el
 then

he

32.

e

ve
he

s)
lock

High-Level Block Operations
The high-level block operations viMoveIn XX() and viMoveOut XX()
have a simple and easy-to-use interface for reading and writing blo
of data residing at either the same or consecutive (incrementing)
register addresses. Like the high-level access operations, the high-l
block operations can detect and handle many errors and do not req
calls to the low-level mapping operations. Unlike the high-level acce
operations, the high-level block operations do not have a direct
low-level counterpart. To perform block operations using the low-lev
access operations, you must map the desired region of memory and
perform multiple viPeek XX() or viPoke XX() operation invocations,
instead of a single call to viMoveIn XX() or viMoveOut XX() .

To use the block operations to access a device, you need to have t
following information about the registers:

• The address space where the registers are located. In a VXI
interface, for example, the address space can be A16, A24, or A

• The beginning offset of the registers relative to the device for th
specified address space.

Note: You do not need to know the actual base address of the device, just the
offset.

• The number of registers or register values to access.

The default behavior of the block operations is to access consecuti
register addresses. However, you can change this behavior using t
attributes VI_ATTR_SRC_INCREMENT (for viMoveIn XX()) and
VI_ATTR_DEST_INCREMENT (for viMoveOut XX()). If the value is
changed from 1 (the default value, indicating consecutive addresse
to 0 (indicating that registers are to be treated as FIFOs), then the b
operations performs the specified number of accesses to the same
register address.

Note: The range value of 0 for the VI_ATTR_SRC_INCREMENT and
VI_ATTR_DEST_INCREMENT attributes may not be supported on all VISA
implementations. In this case, you may need to perform a manual FIFO
block move using individual calls to the high-level or low-level access
operations.
NI-VISA User Manual 5-4 © National Instruments Corporation

Chapter 5 Register-Based Communication

ive
ot go
ace.

on

ber
re to
ory

l

LA
ept

e are
us,
If you are using the block operations in the default mode (consecut
addresses), the number of elements that you want to access may n
beyond the end of the device’s memory in the specified address sp
In other words, the following code sample reads the device's entire
register set in A16 space:

status = viMoveIn16(instr, VI_A16_SPACE, 0, 0x20,

regBuffer16);

Notice that although the device has 0x40 bytes of registers in A16
space, the fourth parameter is 0x20. Why is this? Since the operati
accesses 16-bit registers, the actual range of registers read is 0x20
accesses times 2 B, or all 0x40 bytes.

When using the block operations to access FIFO registers, the num
of elements to read or write is not restricted, because all accesses a
the same register and never go beyond the end of the device’s mem
region. The following sample code writes 4 KB of data to a device’s
FIFO register in A16 space at offset 0x10 (this offset has no specia
significance):

status = viSetAttribute(instr, VI_ATTR_DEST_INCREMENT,

0);

status = viMoveOut32(instr, VI_A16_SPACE, 0x10, 1024,

regBuffer32);

Low-Level Access Operations
Low-Level Access (LLA) operations provide a very efficient way to
perform register-based communication. LLA operations incur much
less overhead than HLA operations for certain types of accesses. L
operations perform the same steps that the HLA operations do, exc
that each individual task performed by an HLA operation is an
individual operation under LLA.

Overview of Register Accesses from Computers
Before learning about the LLA operations, first consider how a
computer can perform a register access to an external device. Ther
two possible ways to perform this access. The first and more obvio
although primitive, is to have some hardware on the computer that
communicates with the external device.
© National Instruments Corporation 5-5 NI-VISA User Manual

Chapter 5 Register-Based Communication

n

ion
 the
 is

ents
can

sult

f

ed

ss

send
You would have to follow these steps:

1. Write the address you want.

2. Specify the data to send.

3. Send the command to perform the access.

As you can see, this method involves a great deal of communicatio
with the local hardware.

The National Instruments MXI plug-in cards and embedded VXI
computers use a second, much more efficient method. This method
involves taking a section of the computer’s address space and mapping
this space to another space, such as the VXI A16 space.

To understand how mapping works, you must first remember that
memory and address space are two different things. For example,
most 32-bit CPUs have 4 GB of address space, but have memory
measured in megabytes. This means that the CPU can put out
over 232 possible addresses onto the local bus, but only a small port
of that corresponds to memory. In most cases, the memory chips in
computer will respond to these addresses. However, because there
less memory in the computer than address space, National Instrum
can add hardware that responds to other addresses. This hardware
then modify the address, according to the mapping that it has, to a VXI
address and perform the access on the VXIbus automatically. The re
is that the computer acts as if it is performing a local access, but in
reality the access has been mapped out of the computer and to the
VXIbus.

For example, consider an Intel 80x86-based computer running
Windows. The addresses from 0xD0000 to 0xDFFFF (64 KB of
addresses) do not correspond to any memory. You could add an
AT-MXI board that listens for 0xD0000 to 0xDFFFF on the bus, and
instruct it to map any addresses it finds in this range to the 64 KB o
VXI A16 space. It does this by taking the 0xD off the address so that it
has a pure 64 KB address. For example, 0xDC000 would be mapp
to 0xC000 in A16 space, which is the base address for a device at
Logical Address 0. The same technique is used for other VXI addre
spaces as well. For example, if you wanted to access registers at
0x200000 in A24 space, you would tell the AT-MXI to strip off the 0xD
as before, but this time add 0x200000 to the resulting address and
it out to the VXIbus.
NI-VISA User Manual 5-6 © National Instruments Corporation

Chapter 5 Register-Based Communication

d

the

l

KB
are.
dard
ess

 is

e.

s
the

 at

 the

A16
u

.

o
ster

ond
le
s
, you
You may wonder what the difference is between the efficient metho
and the primitive method. They seem to be telling the hardware the
same information. However, there are two important differences. In
primitive method, the communication described must take place for
each access. However, the efficient method requires only occasiona
communication with the hardware. Only when you want a different
address space or an address outside of the window (which was 64
long in the previous example) do you need to reprogram the hardw
In addition, when you have set up your hardware, you can use stan
memory access methods, such as pointer dereferences in C, to acc
the VXIbus.

Using VISA to Perform Low-Level Register Accesses
The first LLA operation you need to call to access a device register
the viMapAddress() operation, which sets up the hardware window
and obtains the appropriate pointer to access the VXI address spac
The viMapAddress() operation first programs the hardware to map
local CPU addresses to VXI addresses as described in the previou
section. In addition, it returns a pointer that you can use to access
registers.

The following code is an example of programming the hardware to
access A16 space.

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40,

VI_FALSE, VI_NULL, &address);

This sample code sets up the hardware to map A16 space, starting
offset 0 for 0x40 bytes, and returns the pointer to the window in
address . Remember that the offset is relative to the base address of
device we are talking to through the instr session, not from the base
of A16 space itself. Therefore, offset 0 does not mean address 0 in
space, but rather the starting point of the device’s A16 memory. Yo
can ignore the VI_FALSE and VI_NULL parameters for the most part
because they are reserved for definition by a future version of VISA

Note: To access the device registers through a MEMACC session, you need t
provide the absolute VXIbus addresses (base address for device + regi
offset in device address space).

If you need more than a single map for a device, you must open a sec
session to the device, because VISA currently supports only a sing
map per session. There is very low overhead in having two session
because sessions themselves do not take much memory. However
© National Instruments Corporation 5-7 NI-VISA User Manual

Chapter 5 Register-Based Communication

ent
he

ing
dow

,

e

end

y,
ave

not
e
need to keep track of two session handles. Notice that this is differ
from the maximum number of windows you can have on a system. T
hardware for the controller you are using may have a limit on the
number of unique windows it can support.

When you are finished with the window or need to change the mapp
to another address or address space, you must first unmap the win
using the viUnmapAddress() operation. All you need to specify is
which session you used to perform the map.

status = viUnmapAddress(instr);

Operations versus Pointer Dereference
After the viMapAddress() operation returns the pointer, you can
use it to read or write registers. VISA provides the viPeek XX() and
viPoke XX() operations to perform the accesses. On many systems
theviMapAddress() operation returns a pointer that you can also
dereference directly, rather than calling the LLA operations. The
performance gain achievable by using pointer dereferences over
operation invocations is extremely system dependent. To determin
whether you can use a pointer dereference to perform register
accesses on a given mapped session, examine the value of the
VI_ATTR_WIN_ACCESS attribute. If the value is VI_DEREF_ADDR,
it is safe to perform a pointer dereference.

To make your code portable across different platforms, we recomm
that you always use the accessor operations—viPeek XX() and
viPoke XX() —as a backup method to perform register I/O. In this wa
not only is your source code portable, but your executable can also h
binary compatibility across different hardware platforms, even on
systems that do not support direct pointer dereferences:

viGetAttribute(instr, VI_ATTR_WIN_ACCESS, &access);

if (access == VI_DEREF_ADDR)

*address = 0x1234;

else

viPoke16(instr, address, 0x1234);

Manipulating the Pointer
Every time you call viMapAddress() , the pointer you get back is valid
for accessing a region of addresses. Therefore, if you call
viMapAddress() with mapBase set to address 0 and mapSize to 0x40
(the configuration register space for a VXI device), you can access
only the register located at address 0, but also registers in the sam
NI-VISA User Manual 5-8 © National Instruments Corporation

Chapter 5 Register-Based Communication

 can
ter

 0x40
e
on
other

e
vicinity by manipulating the pointer returned by viMapAddress() . For
example, if you want to access another register at address 0x2, you
add 2 to the pointer. You can add up to and including 0x3F to the poin
to access these registers in this example because we have specified
as the map size. However, notice that you cannot subtract any valu
from the address variable because the mapping starts at that locati
and cannot go backwards. Example 5-1 shows how you can access
registers from address .

Note: The examples in this chapter show C source code. You can find the sam
examples in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 5-1
#include "visa.h"

#define ADD_OFFSET(addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViAddr address; /* User pointer */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL,

VI_NULL, &instr);

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE,

 VI_NULL, &address);

viPeek16(instr, address, &value);

/* Access a different register by manipulating the pointer. */

viPeek16(instr, ADD_OFFSET(address, 2), &value);
© National Instruments Corporation 5-9 NI-VISA User Manual

Chapter 5 Register-Based Communication

u

ess.
ed
ers,

nd
e
f

 the
head.

tatus
s

d to
status = viUnmapAddress(instr);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Bus Errors
The LLA operations do not report bus errors. In fact, viPeek XX() and
viPoke XX() do not report any error conditions. However, the HLA
operations do report bus errors. When using the LLA operations, yo
must ensure that the addresses you are accessing are valid.

Comparison of High-Level and Low-Level Access

Speed
In terms of the speed of developing your application, the HLA
operations are much faster to implement and debug because of the
simpler interface and the status information received after each acc
For speed of execution, the LLA operations perform faster when us
for several register I/O accesses in a single window. For block transf
the high-level block operations perform the fastest.

Remember that the HLA operations must perform a map, access, a
unmap with each call. Even if the window is correctly mapped for th
access, the HLA call at the very least needs to perform some sort o
check to determine if it needs to remap. However, if you know that the
next several accesses are within a single window, you can perform
mapping just once and then each of the accesses has minimal over

Ease of Use
HLA operations are easier to use because they encapsulate many s
checking capabilities not included in LLA operations, which explain
the higher software overhead and lower execution speed of HLA
operations. HLA operations also encapsulate the mapping and
unmapping of hardware windows, which means that you do not nee
call viMapAddress() and viUnmapAddress() separately.
NI-VISA User Manual 5-10 © National Instruments Corporation

Chapter 5 Register-Based Communication

ntly
 a

eral
re

ices
of
he
e
 by
ven
e
p,

 do

er

 or

t of
In
32
Accessing Multiple Address Spaces
You can use LLA operations to access only the address space curre
mapped. To access a different address space, you need to perform
remapping, which involves calling viUnmapAddress() and
viMapAddress() . Therefore, LLA programming becomes more
complex, without much of a performance increase, for accessing sev
address spaces concurrently. In these cases, the HLA operations a
superior.

In addition, if you have several sessions to the same or different dev
all performing register I/O, they must compete for the finite number
windows available. When using LLA operations, you must allocate t
windows and always ensure that the program does not ask for mor
windows than are available. The HLA operations avoid this problem
restoring the window to the previous setting when they are done. E
if all windows are currently in use by LLA operations, you can still us
HLA functions because they will save the state of the window, rema
access, and then restore the window. As a result, you can have an
unlimited number of HLA windows.

Shared Memory Operations

Note: There are two distinct cases for using shared memory operations. In the
first case, the local controller exports general-purpose memory to the
A24/A32 space. In the second case, remote devices export memory into
A24/A32 space. Unlike the first case, the memory exported to A24/A32
space may not be general purpose, so the VISA Shared Memory services
not control memory on remote devices.

A common configuration in a VXI system is to export memory to eith
the A24 or A32 space. The local controller usually can export such
memory. This memory can then be used to buffer the data going to
from the instruments in the system. However, a common problem is
preventing multiple devices from using the same memory. In other
words, a memory manager is needed on this memory to prevent
corruption of the data.

The VISA Shared Memory operations—viMemAlloc() and
viMemFree() —provide the memory management for a specific
device, namely, the local controller. Since these operations are par
the INSTR resource, they are associated with a single VXI device.
addition, because a VXI device can export memory in either A24 or A
© National Instruments Corporation 5-11 NI-VISA User Manual

Chapter 5 Register-Based Communication

s is
 in

s
 to
d
r low
ions
space (but not both), the memory pool available to these operation
defined at startup. You can determine whether the memory resides
A24 or A32 space by querying the attribute VI_ATTR_MEM_SPACE.

Shared Memory Sample Code
The following example shows how these shared memory operation
work by incorporating them into Example 5-1. Their main purpose is
allocate a block of memory from the pool that can then be accesse
through the standard register-based access operations (high level o
level). The INSTR resource for this device ensures that no two sess
requesting memory receive overlapping blocks.

Note: Example 5-2 uses bold text to distinguish lines of code that are different
from those in Example 5-1.

Example 5-2
#include "visa.h"

#define ADD_OFFSET(addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, self ; /* Communication channels */

ViAddr address; /* User pointer */

ViBusAddress offset; /* Shared memory offset */

ViUInt16 addrSpace; /* Shared memory space */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 0 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, " VXI0::0::INSTR ", VI_NULL,

 VI_NULL, &self);
NI-VISA User Manual 5-12 © National Instruments Corporation

Chapter 5 Register-Based Communication
/* Allocate a portion of the device's memory */

status = viMemAlloc(self, 0x100, &offset);

/* Determine where the shared memory resides */

status = viGetAttribute(self, VI_ATTR_MEM_SPACE, &addrSpace);

status = viMapAddress(self, addrSpace, offset , 0x100 ,

 VI_FALSE, VI_NULL, &address);

viPeek16(self , address, &value);

/* Access a different register by manipulating the pointer. */

viPeek16(self , ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(self);

status = viMemFree(self, offset);

/* Close down the system */

status = viClose(self);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 5-13 NI-VISA User Manual

© National Instruments Corporation 6-1
Chapter

6
VISA Resource Manager
r in
ects:
es

f
, and

t in

e
per
at

r

 get

that
This chapter describes the purpose of the VISA Resource Manage
an instrumentation system and discusses its two most important asp
opening sessions to resources, and searching for particular resourc
that are currently available through the Resource Manager.

Purpose of the VISA Resource Manager
The VISA Resource Manager exports services for controlling and
managing resources, including, but not limited to, the assignment o
unique resource addresses, unique resource IDs, resource location
session creation.

The Resource Manager is the entity that knows, at a particular poin
time, which resources can be accessed and how to invoke the
appropriate low-level driver software to find the configuration of the
system. NI-VISA currently relies on the NI-VXI and NI-488.2 softwar
interfaces for configuration of the system resources. To ensure pro
operation of these software systems, refer to the documentation th
accompanied your NI-VXI or NI-488.2 software.

After you establish your configuration, you can use the Resource
Manager to open sessions to individual resources and to search fo
particular resources available on the system.

Using the VISA Resource Manager

Accessing Resources
When trying to access any of the VISA resources, the first step is to
a reference to the default Resource Manager by calling
viOpenDefaultRM() . Your application can then use the session
returned from this call to open sessions to resources controlled by
Resource Manager, as shown in the following example.
NI-VISA User Manual

Chapter 6 VISA Resource Manager

e

g a
mat
Note: The examples in this chapter show C source code. You can find the sam
examples in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 6-1
#include "visa.h"

int main(void)

{

ViStatusstatus;

ViSessiondefaultRM, instr;

/* Open Default RM */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Access other resources */

status = viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL,

VI_NULL, &instr);

/* Use device and eventually close it. */

viClose(instr);

viClose(defaultRM);

return 0;

}

As shown in this example, you use the viOpen() call to open new
sessions. In this call, you specify which resource to access by usin
string that describes the resource. The following table shows the for
for this string. Square brackets indicate optional string segments.

Interface Syntax

VXI VXI[board]:: VXI logical address [::INSTR]

GPIB-VXI GPIB-VXI[board]:: VXI logical address [::INSTR]

GPIB GPIB[board]:: primary address [:: secondary address][::INSTR]

ASRL ASRL[board][::INSTR]
NI-VISA User Manual 6-2 © National Instruments Corporation

Chapter 6 VISA Resource Manager

a
ith
Use the VXI keyword for VXI instruments via either embedded or
MXIbus controllers. Use the GPIB-VXI keyword for a GPIB-VXI
controller. Use the GPIB keyword to establish communication with
GPIB device. Use the ASRL keyword to establish communication w
an asynchronous serial (such as RS-232) device.

The default values for optional string segments are as follows.

The following table shows examples of address strings.

VXI VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board]::MEMACC

Optional String Segment Default Value

board 0

secondary address none

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI
interface VXI0

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a
GPIB-VXI controlled VXI system

GPIB::1::0::INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface 0

ASRL1::INSTR A serial device attached to interface
ASRL1

VXI::MEMACC Board-level register access to the VXI
interface

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI
interface number 1

Interface Syntax
© National Instruments Corporation 6-3 NI-VISA User Manual

Chapter 6 VISA Resource Manager

urce
to
. To
e,

n the
et
e
Searching for Resources
As shown in the previous section, you can create a session to a reso
using the viOpen() call. However, before you use this call you need
know the exact location (address) of the resource you want to open
find out what resources are currently available at a given point in tim
you can use the search services provided by the viFindRsrc()
operation, as shown in the following example.

Notice that while this sample function returns a session, it does not
return the reference to the resource manager session opened withi
same function. If you use this style of initialization routine, you can g
the reference to the resource manager session later by querying th
attribute VI_ATTR_RM_SESSION before closing the INSTR session.
You can then close the resource manager session with viClose() .

Example 6-2
#include "visa.h"

#define MANF_ID 0xFF6 /* 12-bit VXI manufacturer ID of device */

#define MODEL_CODE 0x0FE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */

ViStatus autoConnect(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;

ViFindList fList;

ViChar desc[VI_FIND_BUFLEN];

ViUInt32 numInstrs;

ViUInt16 iManf, iModel;

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA ... exiting */

return status;

}

/* Find all VXI instruments in the system */

status = viFindRsrc(defaultRM, "?*VXI[0-9]*::?*INSTR",

&fList,&numInstrs,desc);

if (status < VI_SUCCESS) {
NI-VISA User Manual 6-4 © National Instruments Corporation

Chapter 6 VISA Resource Manager
/* Error finding resources ... exiting */

viClose(defaultRM);

return status;

}

/* Open a session to each and determine if it matches */

while (numInstrs--) {

status = viOpen(defaultRM,desc,VI_NULL,VI_NULL,&instr);

if (status < VI_SUCCESS) {

viFindNext(fList,desc);

continue;

}

status = viGetAttribute(instr,VI_ATTR_MANF_ID,&iManf);

if ((status < VI_SUCCESS) || (iManf != MANF_ID)) {

viClose(instr);

viFindNext(fList,desc);

continue;

}

status = viGetAttribute(instr,VI_ATTR_MODEL_CODE,&iModel);

if ((status < VI_SUCCESS) || (iModel != MODEL_CODE)) {

viClose(instr);

viFindNext(fList,desc);

continue;

}

/* We have a match, return the session without closing it */

*instrSesn = instr;

viClose(fList);

/* Do not close defaultRM, as that would close instr too */

return VI_SUCCESS;

}

/* No match was found, return an error */

viClose(fList);

viClose(defaultRM);

return VI_ERROR_RSRC_NFOUND;

}

© National Instruments Corporation 6-5 NI-VISA User Manual

Chapter 6 VISA Resource Manager

 at a

u
As this example shows, you can use viFindRsrc() to get a list of
matching resource names, which you can then further examine one
time using viFindNext() . Remember to free the space allocated by
the system by invoking viClose() on the list reference fList .

The following tables show the range of expressions in VISA that yo
can pass to the viFindRsrc() operation.

Instrument Resources Expression

GPIB GPIB[0-9]*::?*INSTR

VXI VXI?*INSTR

GPIB-VXI GPIB-VXI?*INSTR

GPIB and GPIB-VXI GPIB?*INSTR

All VXI ?*VXI[0-9]*::?*INSTR

Serial ASRL[0-9]*::?*INSTR

All ?*INSTR

Memory Resources Expression

VXI VXI?*MEMACC

GPIB-VXI GPIB-VXI?*MEMACC

All VXI ?*VXI[0-9]*::?*MEMACC

All ?*MEMACC
NI-VISA User Manual 6-6 © National Instruments Corporation

© National Instruments Corporation 7-1
Chapter

7
VISA Events
e
e

red

n

al

 a

e
This chapter describes the VISA event model and how to use it. Th
following sections discuss the various events VISA supports and th
event handling paradigm.

Introduction
VISA defines a common mechanism to notify an application when
certain conditions occur. These conditions or occurrences are refer
to as events. An event is a means of communication between a VISA
resource and its applications. Typically, events occur because of a
condition requiring the attention of applications.

The VISA event model provides the folowing two different ways for a
application to receive event notification:

• The first method uses a queuing mechanism. You can use this
method to place all of the occurrences of a specified event in a
queue. The queuing mechanism is generally useful for noncritic
events that do not need immediate servicing. The Queuing section
in this chapter describes this mechanism in detail.

• The other method is to have VISA invoke a function that the
program specifies prior to enabling the event. This is known as
callback handler and is invoked on every occurrence of the
specified event. The callback mechanism is useful when your
application requires an immediate response. The Callbacks section
in this chapter describes this mechanism in detail.

The queuing and callback mechanisms are suitable for different
programming styles. However, because these mechanisms work
independently of each other, you can have them both enabled at th
same time.
NI-VISA User Manual

Chapter 7 VISA Events

s

t

his

s

es

n

his

ted

Supported Events
The following four events are currently defined for the Instrument
Control Resource. These events do not apply to the Memory Acces
Resource.

• VI_EVENT_SERVICE_REQ (Service Request) is a notification of a
service request from the device on a specific session.

• VI_EVENT_VXI_SIGP (VXI Signal Processor) is a notification of
a VXIbus signal or VXIbus interrupt from the device. Notice tha
VISA supports the VI_EVENT_VXI_SIGP event only for VXI
interfaces, so you can enable sessions only to VXI devices for t
event.

• VI_EVENT_VXI_VME_INTR (VXI/VME Interrupt) is a notification
of a VXIbus interrupt from the device. Notice that VISA support
the VI_EVENT_VXI_VME_INTR event only for VXI or VME
interfaces, so you can enable sessions only to VXI or VME devic
for this event.

• VI_EVENT_TRIG (VXI Trigger) is a notification of a VXIbus
trigger. VXIbus interfaces support this event. Therefore, you ca
enable sessions only to VXI devices for this event.

VISA defines the VI_EVENT_IO_COMPLETION event for both the
Instrument Control Resource and the Memory Access Resource. T
I/O Completion event is a notification that an asynchronous I/O
operation has completed.

VISA events use a list of attributes to maintain information associa
with the event. You can access the event attributes using the
viGetAttribute() operation, just as for the session and resource
attributes

All VISA events support the generic event attribute
VI_ATTR_EVENT_TYPE. This attribute provides the type of the
event—whether Service Request, VXI Signal Processor, VXI/VME
Interrupt, VXIbus Trigger, or I/O Completion. In addition to this
attribute, individual events may define attributes to hold additional
event information. Currently, only the VI_EVENT_SERVICE_REQ event
does not define additional attributes. VI_EVENT_VXI_SIGP defines
VI_ATTR_SIGP_STATUS_ID , which contains the 16-bit Status/ID
value retrieved during the interrupt or from the Signal register.
VI_EVENT_TRIG defines VI_ATTR_RECV_TRIG_ID, which provides
the trigger line on which the trigger was received.
NI-VISA User Manual 7-2 © National Instruments Corporation

Chapter 7 VISA Events

er

n use
e
oth

,

bled

lt

VI_EVENT_IO_COMPLETION defines, among other attributes,
VI_ATTR_STATUS and VI_ATTR_RET_COUNT, which provide
information about how the asynchronous I/O operation completed.
VI_EVENT_VXI_VME_INTR defines VI_ATTR_INTR_STATUS_ID and
VI_ATTR_RECV_INTR_LEVEL, which provide the interrupt status and
interrupt level, respectively.

All the attributes VISA events support are read-only attributes; a us
application cannot modify their values. Refer to the NI-VISA online
help or to the NI-VISA Programmer Reference Manual for detailed
information on the specific events.

Enabling and Disabling Events
Before a session can use either the VISA callback or queuing
mechanism, you need to enable the session to sense events. You ca
the viEnableEvent() operation to enable an event using either of th
mechanisms. You can also enable events using a combination of b
queuing and callback mechanisms by (bit-wise) ORing together the
different mechanisms.

For example, to enable the VI_EVENT_VXI_SIGP event for queuing, use
the following code:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP,

VI_QUEUE, VI_NULL);

However, to enable the same event for both queuing and callbacks
change the code as follows:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP,

VI_QUEUE | VI_HNDLR, VI_NULL);

Notice also that viEnableEvent() can add to the number of
mechanisms in use during a session. For example, if you have ena
the application for queuing, it can make a subsequent call to
viEnableEvent() specifying the callback mechanism. The end resu
is that both the queuing and callback mechanisms are enabled.

You cannot use the viEnableEvent() operation to decrease the
number of mechanisms on which a session is enabled for sensing.
Instead, you must use viDisableEvent() for that purpose. For
example, if you have enabled a session for both VI_QUEUE and
VI_HNDLR, a subsequent call to viEnableEvent() with the
mechanism parameter set to VI_QUEUE does not change the
© National Instruments Corporation 7-3 NI-VISA User Manual

Chapter 7 VISA Events

d
k

g

bled

f for

to

lso

 this

n to

ion

the

r.

out

nt
mechanism to queuing only, but returns with the success code
VI_SUCCESS_EVENT_EN, meaning that the specified event is enable
for at least one of the specified mechanisms. To disable the callbac
mechanism, call viDisableEvent() with its mechanism parameter
set to VI_HNDLR. This action disables the callback mechanism but
keeps the queuing method of notification enabled, as in the followin
example:

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP,

VI_HNDLR);

The viEnableEvent() operation also automatically enables the
hardware, if necessary for detecting the event. The hardware is ena
when the first call to viEnableEvent() for the event is made from any
of the sessions currently active. Similarly, viDisableEvent()
disables the hardware when the last enabled session disables itsel
the event.

Queuing
The queuing mechanism in VISA gives an application the flexibility
receive events only when it requests them. An application uses the
viWaitOnEvent() operation to retrieve the event information.
However, in addition to retrieving events from the queue, you can a
use viWaitOnEvent() in your application to halt the current execution
and wait for the event to arrive. Both of these cases are discussed in
section.

The event queuing process requires that you first enable the sessio
sense the particular event type. When enabled, the session can
automatically queue the event occurrences as they happen. A sess
can later dequeue these events using the viWaitOnEvent() operation.
You can set the timeout to VI_TMO_IMMEDIATE if you want your
application to check if any event of the specified event type exists in
queue.

Note: Each session has a queue for each of the possible events that can occu
This means that each queue is per session and per event.

An application can also use viWaitOnEvent() to wait for events if
none currently exists in the queue. When you select a non-zero time
value (something other than VI_TMO_IMMEDIATE), the operation
retrieves the specified event if it exists in the queue and returns
immediately. Otherwise, the application waits until the specified eve
NI-VISA User Manual 7-4 © National Instruments Corporation

Chapter 7 VISA Events

eue,
at
 use

 to
d to
nt

he

at

s.
ion

at
ed

h the
er
fer
occurs or until the timeout expires, whichever occurs first. When an
event arrives and causes viWaitOnEvent() to return, the event is not
queued for the session on which the wait operation was invoked.
However, if any other session is currently enabled for queuing, the
event is placed on the queue for that session.

You can use viDisableEvent() to disable event queuing on a
session, as discussed in the previous section. If you disable the qu
no further event occurrences are queued, but event occurrences th
were already in the event queue are retained. Your application can
viWaitOnEvent() to dequeue these retained events in the same
manner as previously described. The wait operation does not need
have events enabled to work; however, the session must be enable
detect new events. An application can explicitly clear (flush) the eve
queue with the viDiscardEvents() operation.

The event queues in VISA are of fixed length, but you can specify t
size of a queue by using the VI_ATTR_MAX_QUEUE_LENGTH template
attribute. This attribute specifies the maximum number of events th
can be placed on queue.

Note: If the event queue is full and a new event arrives, the new event is
discarded.

VISA does not currently let you dynamically configure queue length
That is, you can only modify the queue length before the first invocat
of the viEnableEvent() operation, as shown in the following code
segment.

status = viSetAttribute(instr,

VI_ATTR_MAX_QUEUE_LENGTH, 10);

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_QUEUE, VI_NULL);

See Example 2-3 in Chapter 2, Introductory Programming Examples,
for an example of handling events via the queue mechanism.

Callbacks
The VISA event model also allows applications to install functions th
can be called back when a particular event type is received. You ne
to install a handler before enabling a session to sense events throug
callback mechanism. VISA currently supports only a single handler p
session, but future versions of VISA may not have this restriction. Re
© National Instruments Corporation 7-5 NI-VISA User Manual

Chapter 7 VISA Events

e

fied

.

ck
cks.
ime.

me

 are
ueue

 the

the
ld
ost
to the section The userHandle Parameter later in this chapter for more
information. The procedure works as follows:

1. Use the viInstallHandler() operation to install handlers to
receive events.

2. Use the viEnableEvent() operation to enable the session for th
callback mechanism as described earlier in the Enabling and
Disabling Events section.

3. The driver invokes the handler on every occurrence of the speci
event.

4. VISA provides the event context in the context parameter of
viEventHandler() . The event context is like a data structure, and
contains information about the specific occurrence of the event
Refer to the section The Life of the Event Context later in this
chapter for more information on event context.

Callback Modes
VISA gives you the choice of two different modes for using the callba
mechanism. You can use either direct callbacks or suspended callba
You can have only one of these callback modes enabled at any one t

To use the direct callback mode, specify VI_HNDLR in the mechanism
parameter. In this mode, VISA invokes the callback routine at the ti
the event occurs.

To use the suspended callback mode, specify VI_SUSPEND_HNDLR in
the mechanism parameter. In this mode, VISA does not invoke the
callback routine at the time of event occurrence; instead, the events
placed on a suspended handler queue. This queue is similar to the q
used by the queuing mechanism except that you cannot access it
directly. You can obtain the events on the queue only by re-enabling
session for callbacks. You can flush the queue with
viDiscardEvents() .

For example, the following code segment shows how you can halt
arrival of events while you perform some critical operations that wou
conflict with code in the callback handler. Notice that no events are l
while this code executes, because they are stored on a queue.
NI-VISA User Manual 7-6 © National Instruments Corporation

Chapter 7 VISA Events

ler
tes

t

rate
for
A
ueue

r the
, if

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_HNDLR, VI_NULL);

.

.

.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_SUSPEND_HNDLR, VI_NULL);

/*Perform code that must not be interrupted by a

callback. */

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_HNDLR, VI_NULL);

When you switch the event mechanism from VI_HNDLR to
VI_SUSPEND_HNDLR, the VISA driver can still detect the events. For
example, VXI interrupts still generate a local interrupt on the control
and VISA handles these interrupts. However, the event VISA genera
for the VXI interrupt is now placed on the handler queue rather than
passed to the application. When the critical section completes,
switching the mechanism from VI_SUSPEND_HNDLR back to VI_HNDLR
causes VISA to call the application’s callback functions whenever i
detects a new event as well as for every event waiting on the handler
queue.

Independent Queues
As stated previously, the callback and the queuing mechanisms ope
totally independently of each other, so VISA keeps the information
event occurrences separately for both mechanisms. Therefore, VIS
maintains the suspended handler queue separately from the event q
used for the queuing mechanism. The VI_ATTR_MAX_QUEUE_LENGTH
attribute mentioned earlier in the Queuing section of this chapter
applies to the suspended handler queue as well as to the queue fo
queuing mechanism. However, because these queues are separate
one of the queues reaches the predefined limit for storing event
occurrences, it does not directly affect the other mechanism.

The userHandle Parameter
When using viInstallHandler() to install handlers for the callback
mechanism, your application can use the userHandle parameter to
supply a reference to any application-defined value. This reference is
passed back to the application as the userHandle parameter to the
© National Instruments Corporation 7-7 NI-VISA User Manual

Chapter 7 VISA Events

with

 in
as

s

ith

pe

ent

er

ove

r
for
ll

k
to a
is
n
gins
callback routine during handler invocation. By supplying different
values for this parameter, applications can install the same handler
different application-defined contexts.

For example, applications often need information that was received
the callback to be available for the main program. In the past, this h
been done through global variables. In VISA, userHandle gives the
application more modularity than is possible with global variables.
In this case, the application can allocate a data structure to hold
information locally. When it installs the callback handler, it can pas
the reference to this data structure to the callback handler via the
userHandle. This means that the handler can store the information
in the local data structure rather than a global data structure.

For another example, consider an application that installs a handler w
a fixed value of 0x1 for the userHandle parameter. It can install the
same handler with a different value, say 0x2, for the same event ty
on another session. However, installations of the same handler are
different from one another. Both handlers are invoked when the ev
of the given type occurs but in one invocation the value passed to
userHandle is 0x1 and in the other it is 0x2. As a result, you can
uniquely identify VISA event handlers by a combination of the handl
address and user context pair.

This structure also is important when the application attempts to rem
the handler. The operation viUninstallHandler() requires not only
the handler’s address but also the userHandle value to correctly
identify which handler to remove. This is more relevant for future
versions of VISA, which may have multiple handlers for a single
session. Because VISA currently supports only a single handler pe
session, the session alone is sufficient for removing a handler, but
future compatibility, VISA requires the same information to uninsta
handlers.

Queuing and Callback Mechanism Sample Code
Example 7-1 demonstrates the use of both the queuing and callbac
mechanisms in event handling. In the program, a message is sent
GPIB device telling it to read some data. When the data collection
complete, the device asserts SRQ, informing the program that it ca
now read data. After reading the device’s status byte, the handler be
to read asynchronously using a buffer of information that the main
program passes to it.
NI-VISA User Manual 7-8 © National Instruments Corporation

Chapter 7 VISA Events
Note: This example shows C source code. You can find the same example in
Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 7-1
#include "visa.h"

#include <stdlib.h>

#define MAX_CNT 1024

/* This function is to be called when an SRQ event occurs */

/* Here, an SRQ event indicates the device has data ready */

ViStatus _VI_FUNCH myCallback(ViSession vi, ViEventType etype,

ViEvent event, ViAddr userHandle)

{

ViJobId jobID;

viStatus status;

viUInt16 stb;

status = viReadSTB(vi, &stb);

status = viReadAsync(vi,(ViBuf)userHandle,MAX_CNT,&jobID);

return VI_SUCCESS;

}

int main(void)

{

ViStatus status;

ViSession defaultRM, gpibSesn;

ViBuf bufferHandle;

ViUInt32 retCount;

ViEventType etype;

ViEvent event;

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA...exiting */

return -1;

}

© National Instruments Corporation 7-9 NI-VISA User Manual

Chapter 7 VISA Events
/* Open communication with GPIB device at primary address 2 */

status = viOpen(defaultRM,"GPIB0::2::INSTR",VI_NULL,VI_NULL,

&gpibSesn);

/* Allocate memory for buffer */

/* In addition, allocate space for the ASCII NULL character */

bufferHandle = (ViBuf)malloc(MAX_CNT+1);

/* Tell the driver what function to call on an event */

status = viInstallHandler(gpibSesn,VI_EVENT_SERVICE_REQ,

myCallback,bufferHandle);

/* Enable the driver to detect events */

status = viEnableEvent(gpibSesn,VI_EVENT_SERVICE_REQ,

VI_HNDLR,VI_NULL);

status = viEnableEvent(gpibSesn,VI_EVENT_IO_COMPLETION,

VI_QUEUE,VI_NULL);

/* Tell the device to begin acquiring a waveform */

status = viWrite(gpibSesn, "E0x51; W1", 9, &retCount);

/* The device asserts SRQ when the waveform is ready */

/* The callback begins reading the data */

/* After the data is read, an I/O completion event occurs */

status = viWaitOnEvent(gpibSesn,VI_EVENT_IO_COMPLETION,20000,

&etype,&event);

if (status < VI_SUCCESS) {

/* Waveform not received...exiting */

free(bufferHandle);

viClose(defaultRM);

return -1;

}

/* Process waveform data */

/* Close the event context */

viClose(event);

/* Stop listening for events */

status = viDisableEvent(gpibSesn,VI_ALL_ENABLED_EVENTS,

VI_ALL_MECH);

status = viUninstallHandler(gpibSesn,VI_EVENT_SERVICE_REQ,

myCallback,bufferHandle);
NI-VISA User Manual 7-10 © National Instruments Corporation

Chapter 7 VISA Events

urs
use

d

 in

 not
er

her

 the
two

 on
/* Close down the system */

free(bufferHandle);

status = viClose(gpibSesn);

status = viClose(defaultRM);

return 0;

}

The Life of the Event Context
The event context that the VISA driver generates when an event occ
is a data object that contains the information about the event. Beca
it is more than just a simple variable, memory allocation and
deallocation becomes important.

Event Context with the Queuing Mechanism
When you use the queuing mechanism, the event context is returne
when you call viWaitOnEvent() . The driver has created this data
structure, but it cannot destroy it until you tell it to. For this reason,
VISA you call viClose() on the event context so the driver can free
the memory for you. Always remember to call viClose() when you
are done with the event.

If you know the type of event you are receiving, and the event does
provide any useful information to your application other than wheth
it actually occurred, you can pass VI_NULL as the outEventType and
eventContext parameters as shown in the following example:

status = viWaitOnEvent(gpibSesn,VI_EVENT_SERVICE_REQ,

5000,VI_NULL,VI_NULL);

In this case, VISA automatically closes the event data structure rat
than returning it to you; calling viClose() on the event context is
therefore both unnecessary and incorrect.

Event Context with the Callback Mechanism
In the case of callbacks, the event is passed to you in a function, so
driver has a chance to destroy it when the function ends. This has
important repercussions. First, you do not need to call viClose() on
the event inside the callback function. Indeed, calling this operation
the event could lead to serious problems such as a system crash.
© National Instruments Corporation 7-11 NI-VISA User Manual

Chapter 7 VISA Events

tion
he

elf
Secondly, the event itself has a life only as long as the callback func
is executing. Therefore, if you want to keep any information about t
event after the callback function, you should use viGetAttribute()
to retrieve the information for storage. Any references to the event its
becomes invalid when the callback function ends.
NI-VISA User Manual 7-12 © National Instruments Corporation

© National Instruments Corporation 8-1
Chapter

8
VISA Locks
ly

st
an
ingle
ad

he
em
sses

 a
.

bal
cal
e
s.
This chapter describes how to use locks in VISA.

Introduction
VISA introduces locks for access control of resources. In VISA,
applications can open multiple sessions to a resource simultaneous
and can access the resource through these different sessions
concurrently. In some cases, applications accessing a resource mu
restrict other sessions from accessing that resource. For example,
application may need to execute a write and a read operation as a s
step so that no other operations intervene between the write and re
operations. The application can lock the resource before invoking t
write operation and unlock it after the read operation, to execute th
as a single step. VISA defines a locking mechanism to restrict acce
to resources for such special circumstances.

The VISA locking mechanism enforces arbitration of accesses to
resources on an individual basis. If a session locks a resource,
operations invoked by other sessions are serviced or returned with
locking error, depending on the operation and the type of lock used

Lock Types
VISA defines two different types, or modes, of locks: exclusive and
shared locks, which are denoted by VI_EXCLUSIVE_LOCK and
VI_SHARED_LOCK, respectively. viLock() is used to acquire a lock on
a resource, and viUnlock() is used to release the lock.

If a session has an exclusive lock, other sessions cannot modify glo
attributes or invoke operations, but can still get attributes and set lo
attributes. If the session has a shared lock, other sessions that hav
shared locks can also modify global attributes and invoke operation
NI-VISA User Manual

Chapter 8 VISA Locks

sed

same

ds,
ame
here
ons.
lock

are

o
ion.

s an
sion
 an
cess

e.
st

 the
nize
Regardless of which type of lock a session has, if the session is clo
without first being unlocked, VISA automatically performs a
viUnlock() on that session.

Lock Sharing
Because the locking mechanism in VISA is session based, multiple
threads sharing a session that has locked a VISA resource have the
privileges for accessing the resource. However, some applications
might have separate sessions to a resource for these multiple threa
and might require that all the sessions in the application have the s
privileges as the session that locked the resource. In other cases, t
might be a need to share locks among sessions in different applicati
Essentially, sessions that have a lock to a resource may share the
with certain sessions, and exclude access from other sessions.

This section discusses the mechanism that makes it possible to sh
locks. VISA defines a lock type—VI_SHARED_LOCK—that gives
exclusive access privileges to a session, along with the capability t
share these exclusive privileges at the discretion of the original sess
When locking sessions with a shared lock, the locking session gain
access key. The session can then share this lock with any other ses
by passing the access key. VISA allows user applications to specify
access key to be used for lock sharing, or VISA can generate the ac
key for an application.

If the application chooses to specify the accessKey, other sessions that
want access to the resource must choose the same unique accessKey for
locking the resource. Otherwise, when VISA generates the accessKey,
the session that gained the shared lock should make the accessKey
available to other sessions for sharing access to the locked resourc
Before the other sessions can access the locked resource, they mu
acquire the lock using the same access key in the accessKey parameter
of the viLock() operation. Invoking viLock() with the same access
key will register the new session with the same access privileges as
original session. All sessions that share a resource should synchro
their accesses to maintain a consistent state of the resource. The
following code is an example of obtaining a shared lock with a
requested name:

status = viLock(instr, VI_SHARED_LOCK, 15000,

"MyLockName", acessKey);
NI-VISA User Manual 8-2 © National Instruments Corporation

Chapter 8 VISA Locks

ne
ck it
e an

when

e
cks

he
e is
red

eful

pe of

 of

This example attempts to acquire a shared lock with "MyLockName" as
the requestedKey and a timeout of 15 s. If the call is successful,
accessKey will contain "MyLockName". If you want to have VISA
generate a key, simply pass VI_NULL in place of "MyLockName" and
VISA will return a unique key in accessKey that other sessions can use
for locking the resource.

Acquiring an Exclusive Lock While Owning a Shared Lock
When multiple sessions have acquired a shared lock, VISA allows o
of the sessions to acquire an exclusive lock as well as the shared lo
is holding. That is, a session holding a shared lock can also acquir
exclusive lock using the viLock() operation. The session holding both
the exclusive and shared lock has the same access privileges it had
it was holding only the shared lock. However, the exclusive lock
precludes other sessions holding the shared lock from accessing th
locked resource. When the session holding the exclusive lock unlo
the resource using the viUnlock() operation, all the sessions
(including the one that acquired the exclusive lock) again have all t
access privileges associated with the shared lock. This circumstanc
useful when you need to synchronize multiple sessions holding a sha
lock. A session holding an exclusive and shared lock can also be us
when one of the sessions needs to execute in a critical section.

Nested Locks
VISA supports nested locking. That is, a session can lock the same
resource multiple times (for the same lock type). Unlocking the
resource requires an equal number of invocations of the viUnlock()
operation. Each session maintains a separate lock count for each ty
locks. Repeated invocations of the viLock() operation for the same
session increase the appropriate lock count, depending on the type
lock requested. In the case of shared locks, nesting viLock() calls
return with the same accessKey every time. In the case of exclusive
locks, viLock() does not return an accessKey, regardless of whether
it is nested or not. For each invocation of viUnlock() , the lock count
is decremented. VISA unlocks a resource only when the lock count
equals 0.
© National Instruments Corporation 8-3 NI-VISA User Manual

Chapter 8 VISA Locks

 for
d
se an
me

e
 that
ber
sing
Locking Sample Code
Example 8-1 uses a shared lock because two sessions are opened
performing trigger operations. The first session receives triggers an
the second session sources triggers. A shared lock is needed becau
exclusive lock would prohibit the other session from accessing the sa
resource. If viWaitOnEvent() fails, this example performs a
viClose() on the resource manager without unlocking or closing th
sessions. When the resource manager session closes, all sessions
were opened using it automatically close as well. Likewise, remem
that closing a session that has any lock results in automatically relea
its lock(s).

Note: This example shows C source code. You can find the same example in
Visual Basic syntax in Appendix A, Visual Basic Examples.

Example 8-1
#include "visa.h"

#define MAX_COUNT 128

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM; /* Communication channels */

ViSession instrIN, instrOUT; /* Communication channels */

ViChar accKey[VI_FIND_BUFLEN]; /* Access key for lock */

ViByte buf[MAX_COUNT]; /* To store device data */

ViEventType etype; /* To identify event */

ViEvent event; /* To hold event info */

ViUInt32 retCount; /* To hold byte count */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

NI-VISA User Manual 8-4 © National Instruments Corporation

Chapter 8 VISA Locks
/* Open communications with VXI Device at Logical Addr 16 */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL,

VI_NULL, &instrIN);

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL,

VI_NULL, &instrOUT);

/* We open two sessions to the same device */

/* One session is used to assert triggers on TTL channel 4 */

/* The second is used to receive triggers on TTL channel 5 */

/* Lock first session as shared, have VISA generate the key */

/* Then lock the second session with the same access key */

status = viLock(instrIN, VI_SHARED_LOCK, 5000,

 VI_NULL, accKey);

status = viLock(instrOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE,

 accKey, accKey);

/* Set trigger channel for sessions */

status = viSetAttribute(instrIN, VI_ATTR_TRIG_ID,VI_TRIG_TTL5);

status = viSetAttribute(instrOUT,VI_ATTR_TRIG_ID,VI_TRIG_TTL4);

/* Enable input session for trigger events */

status = viEnableEvent(instrIN, VI_EVENT_TRIG, VI_QUEUE,

VI_NULL);

/* Assert trigger to tell device to start sampling */

status = viAssertTrigger(instrOUT, VI_TRIG_PROT_DEFAULT);

/* Device will respond with a trigger when data is ready */

if ((status = viWaitOnEvent(instrIN, VI_EVENT_TRIG, 20000,

 &etype, &event)) < VI_SUCCESS) {

viClose(defaultRM);

return -1;

}

/* Close the event */

status = viClose(event);

/* Read data from the device */

status = viRead(instrIN, buf, MAX_COUNT, &retCount);
© National Instruments Corporation 8-5 NI-VISA User Manual

Chapter 8 VISA Locks
/* Process the data */

/* Unlock the sessions */

status = viUnlock(instrIN);

status = viUnlock(instrOUT);

/* Close down the system */

status = viClose(instrIN);

status = viClose(instrOUT);

status = viClose(defaultRM);

return 0;

}

NI-VISA User Manual 8-6 © National Instruments Corporation

© National Instruments Corporation 9-1
Chapter

9
NI-VISA Platform-Specific
and Portability Issues
r

s

ME

rial
 can

s

ng

nts
This chapter discusses programming information for you to conside
when developing applications that use the NI-VISA driver.

After installing the driver software, you can begin to develop your
VISA application software. Remember that the NI-VISA driver relie
on NI-488.2 and NI-VXI for driver-level I/O accesses.

♦ Windows 95/NT users—On VXI and MXI systems, use T&M Explorer to
run the VXI Resource Manager, configure your hardware, and assign V
and GPIB-VXI addresses. For GPIB systems, use the system Device
Manager to configure your hardware. To control instruments through se
ports, you can use T&M Explorer to change the default settings, or you
perform all the necessary configuration at run time by setting VISA
attributes.

♦ All other platforms —On VXI and MXI systems, you must still run
VXIinit and Resman, and use VXIedit or VXItedit for configuration
purposes. Similarly, for GPIB and GPIB-VXI systems, you still use the
GPIB Control Panel applet or IBCONF to configure your system. To
control instruments through serial ports, you can do all necessary
configuration at run-time by setting VISA attributes.

The NI-VISA Programmer Reference Manual contains detailed
descriptions of the VISA attributes, events, and operations. Window
users can access this same information online through NI-visa.hlp .

Programming Considerations
This section contains information for you to consider when developi
applications that use the NI-VISA I/O interface software.

Debugging Tool for Windows 95/NT
NI Spy tracks the calls your application makes to National Instrume
test and measurement (T&M) drivers, including NI-VXI, NI-VISA,
and NI-488.2. NI-488.2 users may notice that NI Spy is similar to
GPIB Spy.
NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

an
 for

n
SA
s.
ve

f an

ns
ory

6 or

other
ute

r,
dle

os
NI Spy highlights functions that return errors, so you can quickly
determine which functions failed during your development. NI Spy c
also log your program’s calls to these drivers so you can check them
errors at your convenience.

Multiple Applications Using the NI-VISA Driver
Multiple-application support is an important feature in all
implementations of the NI-VISA driver. You can have several
applications that use NI-VISA running simultaneously. You can eve
have multiple instances of the same application that uses the NI-VI
driver running simultaneously, if your application is designed for thi
The NI-VISA operations perform in the same manner whether you ha
only one application or several applications (or several instances o
application) all trying to use the NI-VISA driver.

However, you need to be careful when you have multiple applicatio
or sessions using the low-level VXIbus access functions. The mem
windows used to access the VXIbus are a limited resource. Call the
viMapAddress() operation before attempting to perform low-level
VXIbus access with viPeek XX() or viPoke XX() . Immediately after
the accesses are completed, always call the viUnmapAddress()
operation so that you free up the memory window for other
applications.

Low-Level Access Functions
The viMapAddress() operation returns a pointer for use with
low-level access functions. On some systems, such as the VXIpc-48
VXIpc 800 Series embedded computers, it is possible to directly
dereference this pointer. However, on other systems such as the
GPIB-VXI, you must use the viPeek XX() and viPoke XX()
operations. To make your source code portable between these and
platforms, and even other implementations of VISA, check the attrib
VI_ATTR_WIN_ACCESS after calling viMapAddress() . If the value of
that attribute is VI_DEREF_ADDR, you can safely dereference the
address pointer directly. Otherwise, use the viPeek XX() and
viPoke XX() operations to perform register I/O accesses.

National Instruments also provides viPeek XX() and viPoke XX()
macros on certain platforms. The C language macros automatically
dereference the pointer whenever possible without calling the drive
which can substantially improve performance. The macros also han
any retry conditions on the new MXI-2 platforms. Although the macr
NI-VISA User Manual 9-2 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

ill

fine

her

e

ct
he

 up

n

e
can increase performance only on NI-VISA, your application will be
binary compatible with other implementations of VISA (the macros w
just call the viPeek XX() and viPoke XX() operations). However, the
macros are not enabled by default. To use the macros, you must de
the symbol NIVISA_PEEKPOKE before including visa.h .

Interrupt Callback Handlers
Application callbacks—available in C but not in LabVIEW or Visual
Basic—are registered with the viInstallHandler() operation and
must be declared with the following signature:

ViStatus _VI_FUNCH appHandler (ViSession vi, ViEventType

eventType, ViEvent event, ViAddr userHandle)

Notice that the _VI_FUNCH modifier expands to _far _pascal for
Windows 3.x (16-bit) and _stdcall for Windows 95 and Windows NT
(32-bit). These are the standard Windows callback definitions. On ot
systems, such as UNIX and Macintosh, VISA defines _VI_FUNCH to be
nothing (null). Using _VI_FUNCH for handlers makes your source cod
portable to systems that need other modifiers (or none at all).

After you install an interrupt handler and enable the appropriate
event(s), an event occurrence causes VISA to invoke the callback.
When VISA invokes an application callback, it does so in the corre
application context. From within any handler, you can call back into t
NI-VISA driver. On all platforms other than Macintosh, you can also
make system calls. The way VISA invokes callbacks is platform
dependent, as shown in Table 9-1.

Table 9-1. How VISA Invokes Callbacks

Platform Callback Invocation Method

Windows 3.x The application’s stack and data segments are set
properly. The callback does not occur from within
the driver interrupt service routine.

Windows 95
Windows NT

The callback is performed in a separate thread
created by NI-VISA. The thread is signaled as soo
as the event occurs.

Macintosh 68K
Macintosh PPC

For VXI, the callback is performed from within the
driver interrupt service routine. For all other
interfaces, the callback is performed only when th
driver is accessed.
© National Instruments Corporation 9-3 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

SA
 the

ly

en

ur
What this means is that on Windows 3.x (all interfaces) and Macintosh
(all interfaces other than VXI) you cannot wait in a tight loop for a
callback to occur. For example, the following code does not work:

while (!intr_recv)

 ; /* do nothing */

For callbacks to be invoked on these platforms, you must call any VI
operation or give up processor time. You can do this through any of
following methods (listed in order of portability):

1. Any VISA-defined operation

2. The LabWindows/CVI ProcessSystemEvents() function

3. The Windows PeekMessage() or Yield() functions

For example, the following code in a LabWindows/CVI application
does allow callbacks to occur correctly.

while (!intr_recv)

 ProcessSystemEvents(); /* give up time */

Notice that NI-VISA on Windows 95, Windows NT, and all UNIX
platforms does not require you to call VISA operations or give up
processor time to receive callbacks. However, because occasional
calling VISA operations ensures that callbacks will be invoked
correctly on any platform, you should keep these issues in mind wh
writing code that you want to be portable.

Multiple Interface Support Issues
This section contains information about how to use or configure yo
NI-VISA software for certain types of interfaces.

Solaris 2.x For VXI with the PCI-MXI-2, the callback is
performed in a separate thread. For all other
interfaces, the callback is performed via a UNIX
signal.

Solaris 1.x
HP-UX 9
HP-UX 10

The callback is performed via a UNIX signal.

Table 9-1. How VISA Invokes Callbacks (Continued)

Platform Callback Invocation Method
NI-VISA User Manual 9-4 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

or

ot

e
se
en

s

n
VXI and GPIB Platforms
NI-VISA supports all existing National Instruments VXI, GPIB, and
serial hardware for the operating systems on which NI-VISA exists. F
VXI, this includes MXI-1 and MXI-2 platforms, the GPIB-VXI, and the
line of VXIpc embedded computers. For GPIB, this includes, but is n
limited to, the PCI-GPIB, NB-GPIB, GPIB-SPARC series, the full lin
of AT-GPIB/TNT boards, and the GPIB-ENET box, which you can u
to remotely control GPIB devices. With the GPIB-ENET, you can ev
remotely control VXI devices when using a GPIB-VXI controller.

Multiple GPIB-VXI Support
Windows 95/NT users can refer to the T&M Explorer utility to add
multiple National Instruments GPIB-VXI controllers, or any other
vendor’s GPIB-VXI controller, to your system. WIN16 and UNIX user
must use the VISAconf utility to add the controllers.

Serial Port Support
NI-VISA currently supports only a single session at a time on a give
serial port. The maximum number of serial ports that NI-VISA
currently supports on any platform is 32. The default numbering of
serial ports is system dependent, as shown in Table 9-2.

Table 9-2. How Serial Ports Are Numbered

Platform Method

Windows 3.x
Windows 95
Windows NT

ASRL1–ASRL4 access COM1–COM4.
ASRL10–ASRL13 access LPT1–LPT4.

Macintosh 68K
Macintosh PPC

ASRL1 accesses the modem port.
ASRL2 accesses the printer port.

Solaris 2.x ASRL1–ASRL6 access /dev/cua/a –/dev/cua/f .

Solaris 1.x ASRL1–ASRL6 access /dev/ttya –/dev/ttyf .

HP-UX 9
HP-UX 10

ASRL1 and ASRL2 access serial ports 1 and 2
through /dev/tty00 and /dev/tty01 ,
respectively. Additional ports are numbered
consecutively starting at ASRL3, which uses
/dev/tty02 .
© National Instruments Corporation 9-5 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

to

you

oth
ich
e
as
fset

el
 to

s

s.

ent
VME Support
To access VME devices in your system, you must configure NI-VXI
see these devices. Windows 95/NT users can configure NI-VXI by
using the Add Device Wizard in T&M Explorer. Users on other
platforms must use the Non-VXI Device Editor in VXIedit or
VXItedit. For each address space in which your device has memory,
must create a separate pseudo-device entry with a logical address
between 256 and 511. For example, a VME device with memory in b
A24 and A32 spaces requires two entries. You can also specify wh
interrupt levels the device uses. VXI and VME devices cannot shar
interrupt levels. You can then access the device from NI-VISA just
you would a VXI device, by specifying the address space and the of
from the base at which you have configured it. NI-VISA support for
VME devices includes the register access operations (both high-lev
and low-level) and the block-move operations, as well as the ability
receive interrupts.

Windows 3.x Issues
This section contains information specific to Windows 3.x about the
installation and use of NI-VISA.

Installation Overview
After the NI-VISA driver is installed, the Setup program normally
makes some modifications to your initialization files AUTOEXEC.BAT
and WIN.INI . If you choose not to let the installer make these change
automatically, the NI-VISA driver may not perform properly.

The necessary changes include adding the VXIplug&play binary
directory (C:\VXIPNP\WIN\BIN by default) to the PATH environment
variable in AUTOEXEC.BAT, and setting the VPNPPATH environment
variable in both files to the root of the VXIplug&play directory tree
(C:\ by default).

Memory Model
The NI-VISA driver was compiled using the large memory model.
However, Windows application programs that link with the VISA
library can also use the medium, compact, or small memory model
Because of this ability to use different memory models for your
application, not only can you take advantage of the efficiency inher
NI-VISA User Manual 9-6 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

al

or
a

 to a
in small memory model programs, but you can also run multiple
instances of the application.

Application Stack Size
The default stack size in Borland C++ is 5 KB, and in Microsoft Visu
C++ it is 2 KB. In VISA, where the invocation of an operation may
make other calls that in turn call a lower-level driver such as NI-VXI
NI-488.2, such a small stack may easily be exhausted, resulting in
stack overflow. For Windows 3.x (16-bit) VISA applications, set the
stack size to a minimum of 8 KB using the STACKSIZE statement in the
application’s .DEF file. In LabWindows/CVI for Windows 3.x, the
stack size is not normally a problem, as the default stack size is set
more reasonable 16 KB.
© National Instruments Corporation 9-7 NI-VISA User Manual

© National Instruments Corporation A-1
Appendix

A
Visual Basic Examples
les
g

ture

d
This appendix shows the Visual Basic syntax of the ANSI C examp
given earlier in this manual. The examples use the same numberin
sequence for easy reference.

These examples use the VISA data types where applicable. This fea
is available only on Windows 95/NT. To use this feature, select the
VISA library (visa32.dll) as a reference from Visual Basic. This
makes use of the type library embedded into the DLL.

♦ Windows 3.x users—Use the native Visual Basic types as describe
in the NI-VISA online help or NI-VISA Programmer Reference
Manual in the Data Types section.
NI-VISA User Manual

Appendix A Visual Basic Examples
Example 2-1
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Process data

 Rem Close down the system

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
NI-VISA User Manual A-2 © National Instruments Corporation

Appendix A Visual Basic Examples
Example 2-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim deviceID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Addr 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Read the Device ID and write to memory in A24 space

 stat = viIn16(sesn, VI_A16_SPACE, 0, deviceID)

 stat = viOut16(sesn, VI_A24_SPACE, 0, &H1234)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-3 NI-VISA User Manual

Appendix A Visual Basic Examples
Example 2-3
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim eType As ViEventType

 Dim eData As ViEvent

 Dim statID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Enable the driver to detect the interrupts

 stat = viEnableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL)

 Rem Send the commands to the oscilloscope to capture the

 Rem waveform and interrupt when done

 stat = viWaitOnEvent(sesn, VI_EVENT_VXI_SIGP, 5000, eType, eData)

 If (stat < VI_SUCCESS) Then

 Rem No interrupts received after 5000 ms timeout

 stat = viClose (dfltRM)

 Exit Sub

 End If

 Rem Obtain the information about the event and then destroy the

 Rem event. In this case, we want the status ID from the interrupt.

 stat = viGetAttribute(eData, VI_ATTR_SIGP_STATUS_ID, statID)

 stat = viClose(eData)

 Rem Read the data from the instrument and process it.

 Rem Stop listening to events

 stat = viDisableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
NI-VISA User Manual A-4 © National Instruments Corporation

Appendix A Visual Basic Examples
Example 2-4
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with Serial Port 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "ASRL1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Lock the serial port so that nothing else can use it

 stat = viLock(sesn, VI_EXCLUSIVE_LOCK, 5000, "", "")

 Rem Set serial port settings as needed

 Rem Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_BAUD, 2400)

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_DATA_BITS, 7)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Unlock the serial port before ending the program

 stat = viUnlock(sesn)

 Rem Process data

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-5 NI-VISA User Manual

Appendix A Visual Basic Examples
Example 4-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim idnResult As String * 72

 Dim resultBuffer As String * 256

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Initialize the timeout attribute to 10 s

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 10000)

 Rem Set termination character to carriage return (\r=0x0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR, &H0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR_EN, VI_TRUE)

 Rem Don't assert END on the last byte

 stat = viSetAttribute(sesn, VI_ATTR_SEND_END_EN, VI_FALSE)

 Rem Clear the device

 stat = viClear(sesn)

 Rem Request the IEEE 488.2 identification information

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, idnResult, 72, retCount)

 Rem Use idnResult and retCount to parse device info

 Rem Trigger the device for an instrument reading

 stat = viAssertTrigger(sesn, VI_TRIG_PROT_DEFAULT)

 Rem Receive results

 stat = viRead(sesn, resultBuffer, 256, retCount)

 Rem Close sessions

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
NI-VISA User Manual A-6 © National Instruments Corporation

Appendix A Visual Basic Examples
Example 5-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim addr As ViAddr

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 mSpace = VI_A16_SPACE

 stat = viMapAddress(sesn, mSpace, 0, &H40, VI_FALSE, VI_NULL, addr)

 viPeek16 sesn, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 sesn, addr + 2, Value

 stat = viUnmapAddress(sesn)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-7 NI-VISA User Manual

Appendix A Visual Basic Examples
Example 5-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim self As ViSession

 Dim addr As ViAddr

 Dim offs As Long

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 0

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::0::INSTR", VI_NULL, VI_NULL, self)

 Rem Allocate a portion of the device's memory

 stat = viMemAlloc(self, &H100, offs)

 Rem Determine where the shared memory resides

 stat = viGetAttribute(self, VI_ATTR_MEM_SPACE, mSpace)

 stat = viMapAddress(self, mSpace, offs, &H100, VI_FALSE, VI_NULL, addr)

 viPeek16 self, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 self, addr + 2, Value

 stat = viUnmapAddress(self)

 stat = viMemFree(self, offs)

 Rem Close down the system

 stat = viClose(self)

 stat = viClose(dfltRM)

End Sub
NI-VISA User Manual A-8 © National Instruments Corporation

Appendix A Visual Basic Examples
Example 6-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Rem Open Default RM

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Access other resources

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Use device and eventually close it.

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
© National Instruments Corporation A-9 NI-VISA User Manual

Appendix A Visual Basic Examples
Example 6-2
Rem Find the first matching device and return a session to it

Private Function AutoConnect(instrSesn As ViSession) As ViStatus

 Const MANF_ID = &HFF6 '12-bit VXI manufacturer ID of a device

 Const MODEL_CODE = &H0FE '12-bit or 16-bit model code of a device

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim fList As ViFindList

 Dim desc As String * VI_FIND_BUFLEN

 Dim nList As Long

 Dim iManf As Integer

 Dim iModel As Integer

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA ... exiting

 AutoConnect = stat

 Exit Function

 End If

 Rem Find all VXI instruments in the system

 stat = viFindRsrc(dfltRM, "?*VXI[0-9]*::?*INSTR", fList, nList, desc)

 If (stat < VI_SUCCESS) Then

 Rem Error finding resources ... exiting

 viClose (dfltRM)

 AutoConnect = stat

 Exit Function

 End If
NI-VISA User Manual A-10 © National Instruments Corporation

Appendix A Visual Basic Examples
 Rem Open a session to each and determine if it matches

 While (nList)

 stat = viOpen(dfltRM, desc, VI_NULL, VI_NULL, sesn)

 If (stat >= VI_SUCCESS) Then

 stat = viGetAttribute(sesn, VI_ATTR_MANF_ID, iManf)

 If ((stat >= VI_SUCCESS) And (iManf = MANF_ID)) Then

 stat = viGetAttribute(sesn, VI_ATTR_MODEL_CODE, iModel)

 If ((stat >= VI_SUCCESS) And (iModel = MODEL_CODE)) Then

 Rem We have a match, return session without closing

 instrSesn = sesn

 stat = viClose (fList)

 Rem Do not close dfltRM; that would close sesn too

 AutoConnect = VI_SUCCESS

 Exit Function

 End If

 End If

 stat = viClose (sesn)

 End If

 stat = viFindNext(fList, desc)

 nList = nList - 1

 Wend

 Rem No match was found, return an error

 stat = viClose (fList)

 stat = viClose (dfltRM)

 AutoConnect = VI_ERROR_RSRC_NFOUND

End Function
© National Instruments Corporation A-11 NI-VISA User Manual

Appendix A Visual Basic Examples

vents
Example 7-1
Visual Basic does not support callback handlers, so currently the only way to handle e
is through viWaitOnEvent() . Because Visual Basic does not support asynchronous
operations either, this example uses the viRead() call instead of the viReadAsync() call.

Private Sub vbMain()

 Const MAX_CNT = 1024

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim bufferHandle As String

 Dim retCount As Long

 Dim etype As ViEventType

 Dim event As ViEvent

 Dim stb As Integer

 Rem Begin by initializing the system

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB device at primary address 2

 stat = viOpen(dfltRM, "GPIB0::2::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Allocate memory for buffer

 Rem In addition, allocate space for the ASCII NULL character

 bufferHandler = Space$(MAX_CNT + 1)

 Rem Enable the driver to detect events

 stat = viEnableEvent(sesn, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL)

 Rem Tell the device to begin acquiring a waveform

 stat = viWrite(sesn, "E0x51; W1", 9, retCount)

 Rem The device asserts SRQ when the waveform is ready

 stat = viWaitOnEvent(sesn, VI_EVENT_SERVICE_REQ, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 Rem Waveform not received...exiting

 stat = viClose (dfltRM)

 Exit Sub

 End If

 stat = viReadSTB (sesn, stb)
NI-VISA User Manual A-12 © National Instruments Corporation

Appendix A Visual Basic Examples
 Rem Read the data

 stat = viRead(sesn, bufferHandle, MAX_CNT, retCount)

 Rem Process waveform data

 Rem Close the event context

 stat = viClose (event)

 Rem Stop listening for events

 stat = viDisableEvent(sesn, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-13 NI-VISA User Manual

Appendix A Visual Basic Examples
Example 8-1
Private Sub vbMain()

 Const MAX_COUNT = 128

 Dim stat As ViStatus 'For checking errors

 Dim dfltRM As ViSession 'Communication channels

 Dim sesnIN As ViSession 'Communication channels

 Dim sesnOUT As ViSession 'Communication channels

 Dim aKey As String * VI_FIND_BUFLEN 'Access key for lock

 Dim buf As String * MAX_COUNT 'To store device data

 Dim etype As ViEventType 'To identify event

 Dim event As ViEvent 'To hold event info

 Dim retCount As Long 'To hold byte count

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communications with VXI Device at Logical Addr 16

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnIN)

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnOUT)

 Rem We open two sessions to the same device

 Rem One session is used to assert triggers on TTL channel 4

 Rem The second is used to receive triggers on TTL channel 5

 Rem Lock first session as shared, have VISA generate the key

 Rem Then lock the second session with the same access key

 stat = viLock(sesnIN, VI_SHARED_LOCK, 5000, "", aKey)

 stat = viLock(sesnOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, aKey, aKey)

 Rem Set trigger channel for sessions

 stat = viSetAttribute(sesnIN, VI_ATTR_TRIG_ID, VI_TRIG_TTL5)

 stat = viSetAttribute(sesnOUT, VI_ATTR_TRIG_ID, VI_TRIG_TTL4)

 Rem Enable input session for trigger events

 stat = viEnableEvent(sesnIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL)

 Rem Assert trigger to tell device to start sampling

 stat = viAssertTrigger(sesnOUT, VI_TRIG_PROT_DEFAULT)

 Rem Device will respond with a trigger when data is ready

 stat = viWaitOnEvent(sesnIN, VI_EVENT_TRIG, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 stat = viClose (dfltRM)

 Exit Sub
NI-VISA User Manual A-14 © National Instruments Corporation

Appendix A Visual Basic Examples
 End If

 Rem Close the event

 stat = viClose(event)

 Rem Read data from the device

 stat = viRead(sesnIN, buf, MAX_COUNT, retCount)

 Rem Process the data

 Rem Unlock the sessions

 stat = viUnlock(sesnIN)

 stat = viUnlock(sesnOUT)

 Rem Close down the system

 stat = viClose(sesnIN)

 stat = viClose(sesnOUT)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-15 NI-VISA User Manual

© National Instruments Corporation B-1
Appendix

B
Customer Communication
ary to

nd the
ur

ms to
vice,
ware
ms
upport

 files
ownload
 to use
u can
For your convenience, this appendix contains forms to help you gather the information necess
help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form a
configuration form, if your manual contains one, about your system configuration to answer yo
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone syste
quickly provide the information you need. Our electronic services include a bulletin board ser
an FTP site, a Fax-on-Demand system, and e-mail support. If you have a hardware or soft
problem, first try the electronic support systems. If the information available on these syste
does not answer your questions, we offer fax and telephone support through our technical s
centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. Yo
access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use your
Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

Bulletin Board Support

FTP Support
NI-VISA User Manual

 wide
t

l at the
 we can

al
t the
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
(512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, contac
source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

e, and
ting

blem,
sary.

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardwar
use the completed copy of this form as a reference for your current configuration. Comple
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this pro
include the configuration forms from their user manuals. Include additional pages if neces

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) ____________________________________

Computer brand ________________ Model ________________ Processor_______________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed ___________________________________

Hard disk capacity _____MB Brand __

Instruments used ___

National Instruments hardware product model __________ Revision ___________________

Configuration ___

National Instruments software product ____________________________ Version _________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: NI-VISA™ User Manual

Edition Date: September 1997

Part Number: 321074C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) _____________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1
Glossary
ces.

 the
SA

f its
A

address location Refers to the location of a specific register.

address string A string (or other language construct) that uniquely locates and
identifies a resource. VISA defines an ASCII-based grammar that
associates strings with particular physical devices and VISA resour

API Application Programming Interface. The direct interface that an end
user sees when creating an application. In VISA, the API consists of
sum of all of the operations, attributes, and events of each of the VI
resource classes.

attribute A value within an object or resource that reflects a characteristic o
operational state.

Prefix Meaning Value

n- nano- 10–9

µ- micro- 10–6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109
NI-VISA User Manual

Glossary

 with
us
tent

any

an
vice

e an
ral

B

b Bit

B Byte

bus error An error that signals failed access to an address. Bus errors occur
low-level accesses to memory and usually involve hardware with b
mapping capabilities. For example, nonexistent memory, a nonexis
register, or an incorrect device access can cause a bus error.

C

callback Same as handler. A software routine that is invoked when an
asynchronous event occurs. In VISA, callbacks can be installed on
session that processes events.

commander A device that has the ability to control another device. This term c
also denote the unique device that has sole control over another de
(as with the VXI Commander/Servant hierarchy).

communication The same as session. A communication path between a software
channel element and a resource. Every communication channel in VISA is

unique.

controller An entity that can control another device(s) or is in the process of
performing an operation on another device.

D

device An entity that receives commands from a controller. A device can b
instrument, a computer (acting in a non-controller role), or a periphe
(such as a plotter or printer).

DLL Dynamic Link Library. Same as a shared library or shared object. A
file containing a collection of functions that can be used by multiple
applications. This term is usually used for libraries on Windows
platforms.
NI-VISA User Manual G-2 © National Instruments Corporation

Glossary

nt

any

ted
re
e

y of
r

of

 lock
E

event An asynchronous occurrence that is independent of the normal
sequential execution of the process running in a system.

F

FIFO First In-First Out; a method of data storage in which the first eleme
stored is the first one retrieved.

H

handler Same as callback. A software routine that is invoked when an
asynchronous event occurs. In VISA, callbacks can be installed on
session that processes events.

I

instrument A device that accepts some form of stimulus to perform a designa
task, test, or measurement function. Two common forms of stimuli a
message passing and register reads and writes. Other forms includ
triggering or varying forms of asynchronous control.

instrument driver A set of routines designed to control a specific instrument or famil
instruments, and any necessary related files for LabWindows/CVI o
LabVIEW.

interface A generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/
controller hardware necessary for cross-communication.

interrupt A condition that requires attention out of the normal flow of control
a program.

L

lock A state that prohibits sessions other than the session(s) owning the
from accessing a resource.
© National Instruments Corporation G-3 NI-VISA User Manual

Glossary

dress
e

e. In

 multi-
s to

le

ay

er

his is

fers
lar
M

mapping An operation that returns a reference to a specified section of an ad
space and makes the specified range of addresses accessible to th
requester. This function is independent of memory allocation.

O

operation An action defined by a resource that can be performed on a resourc
general, this term is synonymous with the connotation of the word
method in object-oriented architectures.

P

process An operating system element that shares a system's resources. A
process system is a computer system that allows multiple program
execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a sing
program to execute at a given point in time.

R

register An address location that can be read from or written into or both. It m
contain a value that is a function of the state of hardware or can be
written into to cause hardware to perform a particular action. In oth
words, an address location that controls and/or monitors hardware.

resource class The definition for how to create a particular resource. In general, t
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control resource classes, this re
to the definition for how to create a resource which controls a particu
capability or set of capabilities of a device.

resource or In general, this term is synonymous with the connotation of the
resource instance word object in object-oriented architectures. For VISA, resource

more specifically refers to a particular implementation (or
instance in object-oriented terms) of a Resource Class.
NI-VISA User Manual G-4 © National Instruments Corporation

Glossary

. The
ue

a
y an
 the
st

e
8

in a
ltiple

an
, or

ISA

s.
S

s second

session The same as communication channel. A communication path between a
software element and a resource. Every communication channel in
VISA is unique.

shared library Same as DLL. A file containing a collection of functions that can be
or shared object used by multiple applications. This term is usually used for

libraries on UNIX platforms.

shared memory A block of memory that is accessible to both a client and a server
memory block operates as a buffer for communication. This is uniq
to register-based interfaces such as VXI.

SRQ IEEE 488 Service Request. This is an asynchronous request from
remote device that requires service. A service request is essentiall
interrupt from a remote device. For GPIB, this amounts to asserting
SRQ line on the GPIB. For VXI, this amounts to sending the Reque
for Service True event (REQT).

status byte A byte of information returned from a remote device that shows th
current state and status of the device. If the device follows IEEE 48
conventions, bit 6 of the status byte indicates whether the device is
currently requesting service.

T

thread An operating system element that consists of a flow of control with
process. In some operating systems, a single process can have mu
threads, each of which can access the same data space within the
process. However, each thread has its own stack and all threads c
execute concurrently with one another (either on multiple processors
by time-sharing a single processor).

V

virtual instrument A name given to the grouping of software modules (in this case, V
resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a
virtual instrument is the logical grouping of any of the VISA resource
© National Instruments Corporation G-5 NI-VISA User Manual

Glossary

re
r

CC
vel

. This

SA

r
s,
VISA Virtual Instrument Software Architecture. This is the general name
given to this product and its associated architecture. The architectu
consists of two main VISA components: the VISA resource manage
and the VISA resources.

VISA instrument This is the name given to the part of VISA that defines all of the
control resources device-specific resource classes. VISA Instrument Control

resources encompass all defined device capabilities for direct,
low-level instrument control.

VISA memory This is the name given to the part of VISA that defines all of the
access resources register- or memory-specific resource classes. The VISA MEMA

resources encompass all high- and low-level services for interface-le
accesses to all memory defined in the system.

VISA resource This is the name given to the part of VISA that manages resources
manager management includes support for finding resources and opening

sessions to them.

VISA resource This is the name given to the part of VISA that defines the basic
template constraints and interface definition for the creation and use of a VI

resource. All VISA resources must derive their interface from the
definition of the VISA Resource Template. This includes services fo
setting and retrieving attributes, receiving events, locking resource
and closing objects.
NI-VISA User Manual G-6 © National Instruments Corporation

© National Instruments Corporation I-1
Index
ed
A
address mapping

accessing multiple address spaces, 5-11
operation versus pointer dereference, 5-8
overview of register accesses from
computers, 5-5 to 5-7

performing low-level register accesses, 5-6
to 5-7

pointer manipulation, 5-8 to 5-9
programming example, 5-9 to 5-10

application stack size, under Windows 3.x, 9-7
asynchronous read/write services, 4-3 to 4-4
attributes

definition, 3-4
global, 3-5
local, 3-5

B
basic I/O services, 4-1 to 4-7

asynchronous read/write services, 4-3 to 4-4
clear services, 4-4 to 4-5
status/service request service, 4-6 to 4-7
synchronous read/write services, 4-2 to 4-3
trigger services, 4-5 to 4-6

buffers
automatically flushing formatted I/O
buffers, 4-9 to 4-10

controlling serial I/O buffers, 4-11
manually flushing formatted I/O
buffers, 4-9

resizing formatted I/O buffers, 4-10
bulletin board support, B-1

C
callbacks, 7-5 to 7-8

callback modes, 7-6 to 7-7
definition, 7-1
direct, 7-6
event context, 7-11
independent queues, 7-7
interrupt callback handlers, 9-3 to 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
suspended, 7-6
userHandle parameter, 7-7 to 7-8

clear services, 4-4 to 4-5
communication channels. See also

message-based communication; register-bas
communication.

closing, 3-6
opening, 3-5 to 3-6
programming considerations, 3-5 to 3-6

customer communication, xiii , B-1 to B-2

D
device triggering, 4-5
documentation

conventions used in manual, x
how to use documentation set, xi
organization of manual, ix-x
related documentation, xi-xii
NI-VISA User Manual

Index

8

5

E
electronic support services, B-1 to B-2
e-mail support, B-2
event handling programming examples

example 7-1, 7-9 to 7-11
Visual Basic examples, A-4,
A-12 to A-13

events
callbacks, 7-5 to 7-8

callback modes, 7-6 to 7-7
definition, 7-1
event context, 7-11
independent queues, 7-7
interrupt callback handlers, 9-3 to 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
userHandle parameter, 7-7 to 7-8

definition, 7-1
enabling and disabling, 7-3 to 7-4
I/O completion event, 4-3 to 4-4
life of event context, 7-11
queuing, 7-4 to 7-5

definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10

supported events, 7-2 to 7-3
VISA event model, 7-1

examples. See programming examples.
exclusive locks, 8-1, 8-3. See also locks.

F
fax and telephone support, B-2
FaxBack support, B-2
flushing buffers. See buffers.
formatted I/O services, 4-7 to 4-11

automatically flushing formatted I/O
buffers, 4-9 to 4-10

controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted I/O
buffers, 4-9

resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

framework
definition, 1-2
framework and programming language
support (table), 1-3 to 1-4

FTP support, B-1

G
global attributes, 3-5
GPIB platforms, NI-VISA support for, 9-5

multiple GPIB-VXI support, 9-5

H
High-Level Access operations, 5-2 to 5-3

comparison of high- and low-level
access, 5-10 to 5-11

accessing multiple address
spaces, 5-11

ease of use, 5-10
speed, 5-10

read and write operations (table), 5-2
register-based communication, 3-7 to 3-

high-level block operations
read and write operations (table), 5-2
register-based communication, 5-4 to 5-

I
INSTR Resource, definition, 3-4
instrument drivers, 3-3
interface independence, GPIB example,

3-8 to 3-9
interface support with NI-VISA. See multiple

interface support with NI-VISA.
interface-level triggering, 4-6
interrupt callback handlers, 9-3 to 9-4
I/O completion event, 4-3 to 4-4

asynchronous read/write services,4-3
to 4-4

enabling (note), 4-3
NI-VISA User Manual I-2 © National Instruments Corporation

Index

I/O services
basic I/O services, 4-1 to 4-7

asynchronous read/write
services, 4-3 to 4-4

clear services, 4-4 to 4-5
status/service request service,

4-6 to 4-7
synchronous read/write services, 4-2

to 4-3
trigger services, 4-5 to 4-6

formatted I/O services, 4-7 to 4-11
automatically flushing formatted I/O

buffers, 4-9 to 4-10
controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted I/O

buffers, 4-9
resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

L
local attributes, 3-5
locks, 8-1 to 8-6

acquiring exclusive lock, 8-3
lock sharing, 8-2 to 8-3
nested locks, 8-3
overview, 8-1
programming examples

example 2-4, 2-10 to 2-12
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5, A-14

to A-15
types of locks, 8-1 to 8-2

Low-Level Access operations, 5-5 to 5-10
bus errors, 5-10
comparison of high- and low-level access,
5-10 to 5-11

accessing multiple address
spaces, 5-11

ease of use, 5-10
speed, 5-10

computer access overview, 5-5 to 5-7
example 5-1, 5-9 to 5-10
operations versus pointer deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
programming considerations for
NI-VISA, 9-1 to 9-4

read and write operations (table), 5-2
using VISA for performing, 5-7 to 5-8

M
manual. See documentation.
mapping. See address mapping.
memory, shared. See shared

memory operations.
Memory I/O services, 5-1
memory model for NI-VISA under

Windows 3.x, 9-6
message-based communication, 4-1 to 4-13

basic I/O services, 4-1 to 4-7
asynchronous read/write

services, 4-3 to 4-4
clear services, 4-4 to 4-5
status/service request service,

4-6 to 4-7
synchronous read/write services, 4-2

to 4-3
trigger services, 4-5 to 4-6

examples
example 2-1, 2-2 to 2-4
example 4-1, 4-12 to 4-13
Visual Basic examples, A-2, A-6

formatted I/O services, 4-7 to 4-11
automatically flushing formatted I/O

buffers, 4-9 to 4-10
controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted I/O

buffers, 4-9
resizing formatted I/O buffers, 4-10
variable list operations, 4-8

overview, 4-1
© National Instruments Corporation I-3 NI-VISA User Manual

Index

,

0

4

7
7

multiple applications support under
NI-VISA, 9-2

multiple interface support with NI-VISA,
9-5 to 9-6

multiple GPIB-VXI support, 9-5
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5

N
nested locks, 8-3
NI-VISA. See programming considerations

for NI-VISA; VISA.

O
object-oriented (OO) design, 3-4
operations, definition, 3-4

P
platform-specific issues for NI-VISA. See

programming considerations for NI-VISA.
pointer

dereferencing vs. operations, 5-8
manipulating, 5-8 to 5-9

portability issues. See programming
considerations for NI-VISA.

programming considerations for NI-VISA, 9-1
to 9-4. See also programming with VISA.

interrupt callback handlers, 9-3 to 9-4
low-level access functions, 9-2
multiple applications using NI-VISA
driver, 9-2

multiple interface support issues,
9-4 to 9-6

multiple GPIB-VXI support, 9-4
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5

Windows 3.x issues, 9-6 to 9-7
application stack size, 9-7
installation overview, 9-6
memory model, 9-6

programming examples
event handling, 2-7 to 2-10

callbacks, 2-7
discussion of example 2-3, 2-9

to 2-10
example 2-3, 2-8 to 2-9
queuing, 2-7
queuing and callback (example 7-1)

7-9 to 7-11
Visual Basic examples, A-4, A-12

to A-13
locking, 2-10 to 2-12

discussion of example 2-4, 2-12
example 2-4, 2-10 to 2-11
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5, A-14

to A-15
Low-Level Access operations, 5-9 to 5-1
message-based communication,
2-1 to 2-4

discussion of example 2-1, 2-3 to 2-
example 2-1, 2-2
example 4-1, 4-12 to 4-13
overview, 2-1
Visual Basic examples, A-2, A-6

register-based communication, 2-4 to 2-
discussion of example 2-2, 2-6 to 2-
example 2-2, 2-5 to 2-6
example 5-1, 5-9 to 5-10
overview, 2-4 to 2-5
Visual Basic examples, A-3, A-7

Resource Manager
accessing resources

example 6-1, 6-2 to 6-3
Visual Basic example, A-9

searching for resources
example 6-2, 6-4 to 6-6
Visual Basic example, A-10
to A-11
NI-VISA User Manual I-4 © National Instruments Corporation

Index

7

shared memory operations

example 5-2, 5-12 to 5-13
Visual Basic example, A-8

programming language support for NI-VISA
(table), 1-3 to 1-4

programming with VISA. See also
programming considerations for NI-VISA.

communication channels, 3-5 to 3-6
interface independence (example),
3-8 to 3-9

register communication, 3-7 to 3-8
Resource Manager, 3-6 to 3-7
terminology, 3-3 to 3-5

Q
queuing, 7-4 to 7-5

definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10

R
read/write services

asynchronous, 4-3 to 4-4
synchronous, 4-2 to 4-3

register-based communication, 5-1 to 5-13
comparison of high- and low-level
access, 5-10 to 5-11

accessing multiple address
spaces, 5-11

ease of use, 5-10
speed, 5-10

examples
example 2-2, 2-5 to 2-7
example 5-1, 5-9 to 5-10
Visual Basic examples, A-3, A-7

High-Level Access operations
overview, 3-7 to 3-8
purpose and use, 5-2 to 5-3

high-level block operations, 5-4 to 5-5
Low-Level Access operations, 5-5 to 5-10

bus errors, 5-10
computer access overview, 5-5 to 5-
example, 5-9 to 5-10
operations versus pointer

deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
using VISA for performing,

5-7 to 5-8
overview, 5-1 to 5-2
shared memory operations, 5-11 to 5-13

overview, 5-11 to 5-12
sample code, 5-12 to 5-13
when to use (note), 5-11

Register-based devices (RBDs), 5-1
resizing formatted I/O buffers, 4-10
resource, definition, 3-3 to 3-4
Resource Manager. See VISA

Resource Manager.

S
serial I/O buffers, controlling, 4-11
serial port support, 9-5
service request service. See status/service

request service.
sessions. See also communication channels.

definition, 3-5
shared locks, 8-1. See also locks.
shared memory operations, 5-11 to 5-13

examples
sample code (example 5-2), 5-12

to 5-13
Visual Basic example, A-8

overview, 5-11 to 5-12
when to use (note), 5-11
stack size, under Windows 3.x, 9-7
status/service request service, 4-6 to 4-7
synchronous read/write services,
4-2 to 4-3
© National Instruments Corporation I-5 NI-VISA User Manual

Index
T
technical support, B-1 to B-2
telephone and fax support, B-2
termination mechanisms, setting attributes

for, 4-2 to 4-3
timeout, setting (example), 3-4
trigger services, 4-5 to 4-6

description, 4-5 to 4-6
device triggering, 4-5
interface-level, 4-6

U
userHandle parameter, 7-7 to 7-8

V
Variable List operations, 4-8
viAssertTrigger operation, 4-5
VI_ATTR_DEST_INCREMENT, 5-4
VI_ATTR_MAX_QUEUE_

LENGTH, 7-5, 7-7
VI_ATTR_RD_BUF_OPER_MODE, 4-10
VI_ATTR_SEND_END_EN, 4-3
VI_ATTR_SRC_INCREMENT, 5-4
VI_ATTR_TERMCHAR, 4-3
VI_ATTR_TERMCHAR_EN, 4-3
VI_ATTR_TMO_VALUE, 3-4, 4-3
VI_ATTR_TRIG_ID, 4-5
VI_ATTR_WR_BUF_OPER_MODE, 4-10
viClear operation, 4-4, 4-10
viClose operation

closing communication channels
(example), 3-6

closing resource manager session, 6-4
event context, 7-11

viDisableEvent operation
disabling events, 7-3 to 7-4, 7-5
programming example 2-3, 2-9

viDiscardEvents operation, 7-5, 7-6
viEnableEvent operation

asynchronous read/write services
(example), 4-4

callback modes (example), 7-6 to 7-7
enabling events, 7-3 to 7-4
programming example 2-3, 2-8, 2-9

VI_EVENT_IO_COMPLETION event, 7-2
VI_EVENT_SERVICE_REQ event, 4-6, 7-2
VI_EVENT_TRIG event, 7-2
VI_EVENT_VXI_SIGP event, 7-2
viFindNext operation (example), 6-5, 6-6
viFindRsrc operation

searching for resources (example), 6-4
to 6-5, 6-6

specifying regular expression for
Resource Manager, 3-7

viFlush operation
automatically flushing formatted I/O
buffers, 4-9

controlling serial I/O buffers, 4-11
manually flushing formatted I/O
buffers, 4-9

viGetAttribute operation
event context with callback
mechanism, 7-11

programming example 2-3, 2-9
service request (example), 4-6

viIn8 / viIn16 / viIn32 operations
High-Level Access operations, 5-2 to 5-3
opening Resource Manager
communications (example), 3-7

programming example 2-2, 2-5, 2-6
requirements for accessing registers, 5-3

viInstallHandler operation, 7-6, 7-7, 9-3
viLock operation

acquiring exclusive lock, 8-3
lock sharing, 8-2
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5

viMapAddress operation
calling before using viPeekXX or
viPokeXX, 9-2

performing low-level register
accesses, 5-7, 9-2
NI-VISA User Manual I-6 © National Instruments Corporation

Index
pointer dereferencing vs. operations, 5-8
pointer manipulation, 5-8 to 5-9

viMemAlloc operation
programming example, 5-13
shared memory operation, 5-11

viMemFree operation
programming example, 5-13
shared memory operation, 5-11

viMoveIn8 / viMoveIn16 / viMoveIn32
operations, 5-4 to 5-5

viMoveOut8 / viMoveOut16 / viMoveOut32
operations, 5-4 to 5-5

viOpen operation
creating session for resource example, 6-2
opening communication channels
(example), 3-5 to 3-6

programming example, 2-2, 2-3, 6-2
viOpenDefaultRM operation

programming example, 2-2, 2-3, 6-2
starting sessions, 3-6 to 3-7, 6-2

viOut8 / viOut16 / viOut32 operations
High-Level Access operations, 5-2 to 5-3
interface independence (example), 3-9
programming example 2-2, 2-5, 2-6
writing to memory location (example),
3-7 to 3-8

viPeek8 / viPeek16 / viPeek32
operations, 5-8, 9-2

viPoke8 / viPoke16 / viPoke32
operations, 5-8, 9-2

viPrintf operation
automatically flushing formatted I/O
buffers, 4-9

formatted I/O operations, 4-7
manually flushing formatted I/O
buffers, 4-9

viQueryf operation, 4-8
viRead operation

reading string from device (example), 3-5
synchronous read/write services
(example), 4-2

viReadSTB operation, 4-6
Virtual Instrument Software Architecture.

See VISA.
VISA

background and history, 1-2 to 1-4, 3-1
framework and programming language
support (table), 1-3 to 1-4

objectives, 3-2 to 3-3
requirements for getting started, 1-1
standards for VXIplug&play
software, 1-2

VISA API, 3-1
VISA Resource Manager, 6-1 to 6-6

accessing resources, 6-1 to 6-3
address string examples (table), 6-3
default value for optional string

segments (table), 6-3
example 6-1, 6-2 to 6-3
strings for describing resources

(table), 6-2 to 6-3
Visual Basic example, A-9

function of, 3-6 to 3-7
purpose, 6-1
searching for resources, 6-4 to 6-6

example 6-2, 6-4 to 6-5
range of expressions passed to

viFindRsrc (table), 6-6
Visual Basic example, A-10 to A-11

starting session with Default Resource
Manager, 3-7 to 3-7

Visa Transition Library (VTL)
specification, 1-2

viScanf operation
automatically flushing formatted I/O
buffers, 4-9

formatted I/O operations, 4-7
manually flushing formatted I/O
buffers, 4-9

viSetAttribute operation
programming example 2-1, 2-3
setting timeout attribute (example), 3-4
© National Instruments Corporation I-7 NI-VISA User Manual

Index
synchronous read/write services
(example), 4-3

trigger service (example), 4-5
viSetBuf operation

automatically flushing formatted I/O
buffers, 4-10

controlling serial I/O buffers, 4-11
resizing formatted I/O buffers, 4-10

Visual Basic examples
accessing resources, A-9
event handling, A-4, A-12 to A-13
locking, A-14 to A-15
locks, A-5
message-based communication, A-2, A-6
register-based communication, A-3, A-7
searching for resources, A-10 to A-11
shared memory operations, A-8

viTerminate operation, 4-3, 4-4
viUninstallHandler operation, 7-8
viUnlock operation

exclusive locks, 8-3
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5

viUnmapAddress operation, 5-8
viVPrintf operation, 4-8
viVQueryf operation, 4-8
viVScanf operation, 4-8

viWaitOnEvent operation
asynchronous read/write services
(example), 4-4

event context, 7-11
event queuing process, 7-5
programming example 2-3, 2-8, 2-9

viWrite operation
formatted I/O operations (example), 4-8
programming example 2-1, 2-4
sending string to device (example), 3-4
to 3-5

synchronous read/write services
(example), 4-2

viWriteAsync operation (example), 4-4
VME devices, NI-VISA support for, 9-6
VTL specification, 1-2
VXI platforms, NI-VISA support for, 9-5

multiple GPIB-VXI support, 9-5
VXI plug&play standards, 1-2

W
Windows 3.x programming issues, 9-6 to 9-7

application stack size, 9-7
installation overview, 9-6
memory model, 9-6

word serial protocol, 2-1
write services. See read/write services.
NI-VISA User Manual I-8 © National Instruments Corporation

	NI-VISA™ User Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	How to Use This Documentation Set
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	How to Use This Manual
	What You Need to Get Started
	Introduction to VISA

	Chapter 2 Introductory Programming Examples
	Example of Message-Based Communication
	Example 2-1
	Example 2-1 Discussion

	Example of Register-Based Communication
	Example 2-2
	Example 2-2 Discussion

	Example of Handling Events
	Callbacks
	Queuing
	Example 2-3
	Example 2-3 Discussion

	Example of Locking
	Example 2-4
	Example 2-4 Discussion

	Chapter 3 VISA Overview
	Introduction
	Objectives of VISA
	Programming with VISA
	Beginning Terminology
	Communication Channels
	The Resource Manager
	Register Communication
	Example of Interface Independence

	Chapter 4 Message-Based Communication
	Introduction
	Basic I/O Services
	Synchronous Read/Write Services
	Asynchronous Read/Write Services
	Clear Service
	Trigger Service
	Status/Service Request Service

	Formatted I/O Services
	Formatted I/O Operations
	Variable List Operations
	Manually Flushing the Formatted I/O Buffers
	Automatically Flushing the Formatted I/O Buffers
	Resizing the Formatted I/O Buffers
	Controlling the Serial I/O Buffers

	Example VISA Message-Based Application
	Example 4-1

	Chapter 5 Register-Based Communication
	Introduction
	High-Level Access Operations
	High-Level Block Operations
	Low-Level Access Operations
	Overview of Register Accesses from Computers
	Using VISA to Perform Low-Level Register Accesses
	Operations versus Pointer Dereference
	Manipulating the Pointer
	Example 5-1
	Bus Errors

	Comparison of High-Level and Low-Level Access
	Speed
	Ease of Use
	Accessing Multiple Address Spaces

	Shared Memory Operations
	Shared Memory Sample Code
	Example 5-2

	Chapter 6 VISA Resource Manager
	Purpose of the VISA Resource Manager
	Using the VISA Resource Manager
	Accessing Resources
	Example 6-1
	Searching for Resources
	Example 6-2

	Chapter 7 VISA Events
	Introduction
	Supported Events
	Enabling and Disabling Events
	Queuing
	Callbacks
	Callback Modes
	Independent Queues
	The userHandle Parameter

	Queuing and Callback Mechanism Sample Code
	Example 7-1

	The Life of the Event Context
	Event Context with the Queuing Mechanism
	Event Context with the Callback Mechanism

	Chapter 8 VISA Locks
	Introduction
	Lock Types
	Lock Sharing
	Acquiring an Exclusive Lock While Owning a Shared ...
	Nested Locks

	Locking Sample Code
	Example 8-1

	Chapter 9 NI-VISA Platform-Specific and Portability Issues
	Programming Considerations
	Debugging Tool for Windows 95/NT
	Multiple Applications Using the NI-VISA Driver
	Low-Level Access Functions
	Interrupt Callback Handlers

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Multiple GPIB-VXI Support
	Serial Port Support
	VME Support

	Windows 3.x Issues
	Installation Overview
	Memory Model
	Application Stack Size

	Appendix A Visual Basic Examples
	Appendix B Customer Communication
	Glossary
	Index
	Tables
	Table 1 1. NI-VISA Support
	Table 9�1. How VISA Invokes Callbacks (Continued)
	Table 9�2. How Serial Ports Are Numbered

